期刊文献+
共找到75篇文章
< 1 2 4 >
每页显示 20 50 100
心电图机检定中的工频干扰及抑制方法 被引量:9
1
作者 姚文坡 毛靖宁 刘铁兵 《医疗卫生装备》 CAS 2015年第5期89-91,共3页
目的:通过对心电图机检定中的工频干扰进行分析,研究其对心电图机的影响及应对措施。方法:根据工频干扰的原理,通过保证电源的稳定性、合理的屏蔽、有效的接地、有效的导线缠绕方式等抑制工频干扰,减小50 Hz工频干扰对心电图机检定的影... 目的:通过对心电图机检定中的工频干扰进行分析,研究其对心电图机的影响及应对措施。方法:根据工频干扰的原理,通过保证电源的稳定性、合理的屏蔽、有效的接地、有效的导线缠绕方式等抑制工频干扰,减小50 Hz工频干扰对心电图机检定的影响。结果:采取上述方法后,工频干扰对心电图机的影响大大减小。结论:抑制工频干扰,可保证心电图机工作的精确度,确保患者诊断的准确性。 展开更多
关键词 心电图机 工频干扰 电磁屏蔽 滤波
下载PDF
Arrhythmia Detection by Using Chaos Theory with Machine Learning Algorithms
2
作者 Maie Aboghazalah Passent El-kafrawy +3 位作者 Abdelmoty M.Ahmed Rasha Elnemr Belgacem Bouallegue Ayman El-sayed 《Computers, Materials & Continua》 SCIE EI 2024年第6期3855-3875,共21页
Heart monitoring improves life quality.Electrocardiograms(ECGs or EKGs)detect heart irregularities.Machine learning algorithms can create a few ECG diagnosis processing methods.The first method uses raw ECG and time-s... Heart monitoring improves life quality.Electrocardiograms(ECGs or EKGs)detect heart irregularities.Machine learning algorithms can create a few ECG diagnosis processing methods.The first method uses raw ECG and time-series data.The second method classifies the ECG by patient experience.The third technique translates ECG impulses into Q waves,R waves and S waves(QRS)features using richer information.Because ECG signals vary naturally between humans and activities,we will combine the three feature selection methods to improve classification accuracy and diagnosis.Classifications using all three approaches have not been examined till now.Several researchers found that Machine Learning(ML)techniques can improve ECG classification.This study will compare popular machine learning techniques to evaluate ECG features.Four algorithms—Support Vector Machine(SVM),Decision Tree,Naive Bayes,and Neural Network—compare categorization results.SVM plus prior knowledge has the highest accuracy(99%)of the four ML methods.QRS characteristics failed to identify signals without chaos theory.With 99.8%classification accuracy,the Decision Tree technique outperformed all previous experiments. 展开更多
关键词 ecg extraction ecg leads time series prior knowledge and arrhythmia chaos theory QRS complex analysis machine learning ecg classification
下载PDF
以BP神经网络为工具的短时ECG信号情感分类
3
作者 张善斌 《福建电脑》 2024年第2期11-16,共6页
针对目前生理信号情感识别领域采用的生理信号种类太多或使用的生信号长度较长的问题,本文使用BP神经网络对单一、短时ECG信号进行情感识别分类,并对识别时间进行了估计。通过诱发被试喜、怒、哀、惧和平静5种基本情感状态,采集到ECG生... 针对目前生理信号情感识别领域采用的生理信号种类太多或使用的生信号长度较长的问题,本文使用BP神经网络对单一、短时ECG信号进行情感识别分类,并对识别时间进行了估计。通过诱发被试喜、怒、哀、惧和平静5种基本情感状态,采集到ECG生理信号,处理后利用神经网络建立模型。实验结果表明,本文方法得到的情感分类的平均识别率为89.14%,且生理信号进行特征提取和识别分类的时间总和小于0.15s,有效地降低了对生理信号种类和窗口长度的依赖。 展开更多
关键词 情感分类 BP神经网络 ecg信号 机器识别
下载PDF
互联网家用无线心电图机的设计及应用 被引量:4
4
作者 毕讯 隆彦群 《中国医疗器械杂志》 2022年第3期269-272,共4页
该研究全面介绍了互联网家用无线心电图机的设计及应用。我们研制了干电极,制作了四个干电极三导联手机型心电图机,它不仅具有芯片滤波功能,而且具有无线通信功能,因此被应用于心电监护和病人诊断中。与传统的心电图机相比,它非常方便,... 该研究全面介绍了互联网家用无线心电图机的设计及应用。我们研制了干电极,制作了四个干电极三导联手机型心电图机,它不仅具有芯片滤波功能,而且具有无线通信功能,因此被应用于心电监护和病人诊断中。与传统的心电图机相比,它非常方便,可以家用,其与手机配套,无线上传,实现远程监控及预警,利用互联网技术减少猝死,实现互联网医疗;在预防、监护心脏疾病中发挥着越来越重要的作用,是提高诊断、监护及急救成功率的重要设备。 展开更多
关键词 无线 心电图机 监护 手机 诊断
下载PDF
Machine Learning for Detecting Blood Transfusion Needs Using Biosignals
5
作者 Hoon Ko Chul Park +3 位作者 Wu Seong Kang Yunyoung Nam Dukyong Yoon Jinseok Lee 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期2369-2381,共13页
Adequate oxygen in red blood cells carrying through the body to the heart and brain is important to maintain life.For those patients requiring blood,blood transfusion is a common procedure in which donated blood or bl... Adequate oxygen in red blood cells carrying through the body to the heart and brain is important to maintain life.For those patients requiring blood,blood transfusion is a common procedure in which donated blood or blood components are given through an intravenous line.However,detecting the need for blood transfusion is time-consuming and sometimes not easily diagnosed,such as internal bleeding.This study considered physiological signals such as electrocardiogram(ECG),photoplethysmogram(PPG),blood pressure,oxygen saturation(SpO2),and respiration,and proposed the machine learning model to detect the need for blood transfusion accurately.For the model,this study extracted 14 features from the physiological signals and used an ensemble approach combining extreme gradient boosting and random forest.The model was evaluated by a stratified five-fold crossvalidation:the detection accuracy and area under the receiver operating characteristics were 92.7%and 0.977,respectively. 展开更多
关键词 Blood transfusion ecg PPG pulse transit time blood pressure machine learning
下载PDF
Improved Bat Algorithm with Deep Learning-Based Biomedical ECG Signal Classification Model
6
作者 Marwa Obayya Nadhem NEMRI +5 位作者 Lubna A.Alharbi Mohamed K.Nour Mrim M.Alnfiai Mohammed Abdullah Al-Hagery Nermin M.Salem Mesfer Al Duhayyim 《Computers, Materials & Continua》 SCIE EI 2023年第2期3151-3166,共16页
With new developments experienced in Internet of Things(IoT),wearable,and sensing technology,the value of healthcare services has enhanced.This evolution has brought significant changes from conventional medicine-base... With new developments experienced in Internet of Things(IoT),wearable,and sensing technology,the value of healthcare services has enhanced.This evolution has brought significant changes from conventional medicine-based healthcare to real-time observation-based healthcare.Biomedical Electrocardiogram(ECG)signals are generally utilized in examination and diagnosis of Cardiovascular Diseases(CVDs)since it is quick and non-invasive in nature.Due to increasing number of patients in recent years,the classifier efficiency gets reduced due to high variances observed in ECG signal patterns obtained from patients.In such scenario computer-assisted automated diagnostic tools are important for classification of ECG signals.The current study devises an Improved Bat Algorithm with Deep Learning Based Biomedical ECGSignal Classification(IBADL-BECGC)approach.To accomplish this,the proposed IBADL-BECGC model initially pre-processes the input signals.Besides,IBADL-BECGC model applies NasNet model to derive the features from test ECG signals.In addition,Improved Bat Algorithm(IBA)is employed to optimally fine-tune the hyperparameters related to NasNet approach.Finally,Extreme Learning Machine(ELM)classification algorithm is executed to perform ECG classification method.The presented IBADL-BECGC model was experimentally validated utilizing benchmark dataset.The comparison study outcomes established the improved performance of IBADL-BECGC model over other existing methodologies since the former achieved a maximum accuracy of 97.49%. 展开更多
关键词 Data science ecg signals improved bat algorithm deep learning biomedical data data classification machine learning
下载PDF
基于ECG的可电击复律心律自动判别算法研究
7
作者 郑越 侯星宇 邬小玫 《中国生物医学工程学报》 CSCD 北大核心 2023年第5期572-582,共11页
体外自动除颤器(AED)是挽救心脏骤停(SCA)患者生命的重要设备。可电击复律心律自动判别算法(SAA)是AED的核心技术。本研究在构建包括8 s的2024段可电击复律心律(SHR)心电图(ECG)和7884段不可电击复律心律(NSHR)ECG数据集的基础上,提出... 体外自动除颤器(AED)是挽救心脏骤停(SCA)患者生命的重要设备。可电击复律心律自动判别算法(SAA)是AED的核心技术。本研究在构建包括8 s的2024段可电击复律心律(SHR)心电图(ECG)和7884段不可电击复律心律(NSHR)ECG数据集的基础上,提出了一种基于机器学习的SAA。首先提取ECG的时域、频域、复杂度相关的32个特征,经筛选得到6个有效特征;之后用支持向量机实现SHR和NSHR自动分类。根据500次按患者随机分组的实验,敏感度、特异性、准确率的均值±标准差分别为97.62%±0.18%、99.15%±0.04%、98.79%±0.08%。所提出的SAA符合美国心脏病协会对AED中SAA敏感度超过90%,特异性超过95%的要求,可作为AED算法模块进行SHR的自动判别。 展开更多
关键词 可电击复律心律自动判别 心电信号 机器学习 特征提取 特征选择
下载PDF
基于STM32的心血管造影剂自动推注系统
8
作者 赵昌 宋源清 +3 位作者 陈光 袁成功 董静文 张民 《电子设计工程》 2023年第24期7-11,18,共6页
医院中心血管注射造影剂应用广泛,为了提高心血管造影剂注射系统的智能化与自动化,该文设计了一款基于STM32H743VIT6的心血管造影剂自动推注系统。系统主要由主控模块、步进电机控制模块、心电信号采集模块、心脏压力采集模块、上位机... 医院中心血管注射造影剂应用广泛,为了提高心血管造影剂注射系统的智能化与自动化,该文设计了一款基于STM32H743VIT6的心血管造影剂自动推注系统。系统主要由主控模块、步进电机控制模块、心电信号采集模块、心脏压力采集模块、上位机系统五部分组成。能够实时将测量的数据上传给上位机,由上位机实现远程管理。该文主要详细阐述了系统的主控模块,简单阐述了其余硬件和软件设计部分。该系统性能优越、运行稳定可靠,具有应用普及价值。 展开更多
关键词 STM32H743VIT6 心血管造影剂 心电信号 上位机
下载PDF
基于特征选择算法的ECG信号分类 被引量:2
9
作者 袁高腾 周晓峰 郭宏乐 《山东大学学报(工学版)》 CAS CSCD 北大核心 2022年第4期38-44,共7页
为了提高不同类别心电图(Electrocardiogram,ECG)信号的识别精度,使用小波分析提取心电信号特征,并使用分段距离的特征筛选方法对特征进行筛选排序,去除冗余和干扰特征,挑选出关键特征。通过缩减特征数量,提高分类的精度和效率。结合机... 为了提高不同类别心电图(Electrocardiogram,ECG)信号的识别精度,使用小波分析提取心电信号特征,并使用分段距离的特征筛选方法对特征进行筛选排序,去除冗余和干扰特征,挑选出关键特征。通过缩减特征数量,提高分类的精度和效率。结合机器学习分类器对特征进行分类,比较分类效果。结果显示,在MIT-BIH数据集上,本方法的分类精度比不使用特征选择分类精度高0.22%,分类精度最高达到99.67%。试验证明本研究提出的模型能够区分4种常见的ECG信号,较传统方法优势明显。 展开更多
关键词 ecg信号 小波变换 特征选择 机器学习
原文传递
Visualization of the Machine Learning Process Using J48 Decision Tree for Biometrics through ECG Signal
10
作者 Robert LeMoyne Timothy Mastroianni 《Journal of Biomedical Science and Engineering》 CAS 2022年第12期287-296,共10页
The inherently unique qualities of the heart infer the candidacy for the domain of biometrics, which applies physiological attributes to establish the recognition of a person’s identity. The heart’s characteristics ... The inherently unique qualities of the heart infer the candidacy for the domain of biometrics, which applies physiological attributes to establish the recognition of a person’s identity. The heart’s characteristics can be ascertained by recording the electrical signal activity of the heart through the acquisition of an electrocardiogram (ECG). With the application of machine learning the subject specific ECG signal can be differentiated. However, the process of distinguishing subjects through machine learning may be considered esoteric, especially for contributing subject matter experts external to the domain of machine learning. A resolution to this dilemma is the application of the J48 decision tree available through the Waikato Environment for Knowledge Analysis (WEKA). The J48 decision tree elucidates the machine learning process through a visualized decision tree that attains classification accuracy through the application of thresholds applied to the numeric attributes of the feature set. Additionally, the numeric attributes of the feature set for the application of the J48 decision tree are derived from the temporal organization of the ECG signal maxima and minima for the respective P, Q, R, S, and T waves. The J48 decision tree achieves considerable classification accuracy for the distinction of subjects based on their ECG signal, for which the machine learning model is briskly composed. 展开更多
关键词 J48 Decision Tree ecg Signal BIOMETRICS machine Learning Signal Analysis machine Learning Trust
下载PDF
心电图机结构及常见故障分析 被引量:3
11
作者 孙敏 《安徽冶金科技职业学院学报》 2017年第4期49-51,共3页
心电图机是医疗诊断时常用的电生理检测仪器,同时在生物医学工程中也是理论和实践性的代表,是医院最普及的诊断类医疗器械之一。简单概括了心电图机的基本结构,并总结了心电图机的常见故障和排除方法。
关键词 心图 基结 故障
下载PDF
卫生列车运行中心电图伪差的分析与防范 被引量:2
12
作者 陈渝 刘春燕 +2 位作者 孙汉军 黄丹 杨耀模 《中国医疗设备》 2008年第8期90-92,共3页
目的观察及解决在列车运行中心电图波形的变化,为卫生列车建设中的医疗装备配置提供参考依据。方法在列车运行不同时速、机器放置不同位置、使用交流或直流供电的情况下,对同一受检者进行心电波形描记。结果分析和归纳各种状态下的心电... 目的观察及解决在列车运行中心电图波形的变化,为卫生列车建设中的医疗装备配置提供参考依据。方法在列车运行不同时速、机器放置不同位置、使用交流或直流供电的情况下,对同一受检者进行心电波形描记。结果分析和归纳各种状态下的心电记录波形,未见电磁干扰,但偶见基线颤动和漂移。结论列车运行中心电图偶见的基线颤动与漂移.其变化程度不影响医疗诊断,并可予以防范。 展开更多
关键词 卫生列车 心电图 心电图机 电磁干扰
下载PDF
Preliminary Biometrics of ECG Signal Based on Temporal Organization through the Implementation of a Multilayer Perceptron Neural Network 被引量:1
13
作者 Robert LeMoyne Timothy Mastroianni 《Journal of Biomedical Science and Engineering》 2021年第12期435-441,共7页
The attributes of the ECG signal signifying the unique electrical properties of the heart offer the opportunity to expand the realm of biometrics, which pertains the identification of an individual based on physical c... The attributes of the ECG signal signifying the unique electrical properties of the heart offer the opportunity to expand the realm of biometrics, which pertains the identification of an individual based on physical characteristics. The temporal organization of the ECG signal offers a basis for composing a machine learning feature set. The four attributes of the feature set are derived through software automation enabled by Python. These four attributes are the temporal differential of the P wave maximum and T wave maximum relative to the R wave maximum and the Q wave minimum and S wave minimum relative to the R wave maximum. The multilayer perceptron neural network was applied and evaluated in terms of classification accuracy and time to develop the model. Superior performance was achieved with respect to a reduced feature set considering only the temporal differential of the P wave maximum and T wave maximum relative to the R wave maximum by comparison to all four attributes applied to the feature set and the temporal differential of the Q wave minimum and S wave minimum relative to the R wave maximum. With these preliminary findings and the advent of portable and wearable devices for the acquisition of the ECG signal, the temporal organization of the ECG signal offers robust potential for the field of biometrics. 展开更多
关键词 ecg Signal BIOMETRICS Multilayer Perceptron Neural Network machine Learning Signal Analysis
下载PDF
基于心电信号的先心病肺动脉高压识别分类研究 被引量:1
14
作者 韩宇森 杨宏波 +2 位作者 孙静 潘家华 王威廉 《计算机科学》 CSCD 北大核心 2022年第S02期480-487,共8页
先天性心脏病相关性肺动脉高压(Pulmonary Arterial Hypertension,PAH)在临床上有着很高的发病率、致残率和病死率,其确诊主要采用右心导管测量平均肺动脉压,这种方法有创且操作性要求高,不便在筛查中采用,因此探索一种非介入式CHD-PAH... 先天性心脏病相关性肺动脉高压(Pulmonary Arterial Hypertension,PAH)在临床上有着很高的发病率、致残率和病死率,其确诊主要采用右心导管测量平均肺动脉压,这种方法有创且操作性要求高,不便在筛查中采用,因此探索一种非介入式CHD-PAH智能辅助诊断方案意义重大。在先心病的基础上对CHD-PAH进行研究,从分析ECG入手,通过预处理、心拍分割、波形检测、特征提取、数据扩充、分类识别等手段对CHD-PAH进行建模预测。在Christov_segmenter算法基础上,利用差分阈值和局部峰值改进,检测QRS波、P波和T波,最后提取基于时间和幅度的双模态特征。为了拟合出最佳的分类模型,实验采用了支持向量机、随机森林及K邻近等分类器,并设计基于T分布的麻雀搜索算法改进支持向量机。实验共使用460段时长为20s的1导联ECG信号进行训练和测试。实验结果表明,所提算法优化的支持向量机模型预测准确率、特异度和灵敏度分别可达99.76%,99.80%,99.73%。 展开更多
关键词 心电图 先天性心脏病(先心病) 肺动脉高压 分类器 机器学习
下载PDF
ECG-6511型心电图机心电信号严重失真等故障检修 被引量:2
15
作者 于广亭 《中国医疗设备》 2008年第8期120-120,107,共2页
介绍了ECG-6511心电图机3例常见故障分析与检修的方法。
关键词 心电图机 医疗设备维修
下载PDF
基地化训练实践过程中对特诊保障的定位与思考 被引量:2
16
作者 张妙贤 董兴宝 +1 位作者 郭新 何伟华 《医疗卫生装备》 CAS 2017年第12期121-123,共3页
目的:探讨基地化训练任务中特诊保障存在的问题与解决方法,使其能够更好地发挥保障作用。方法:分析训练中特诊仪器设备的配置、装备在训练中的使用情况、特诊保障人员的工作情况,以及人员、装备与工作间协作方面存在的问题,并对相应对... 目的:探讨基地化训练任务中特诊保障存在的问题与解决方法,使其能够更好地发挥保障作用。方法:分析训练中特诊仪器设备的配置、装备在训练中的使用情况、特诊保障人员的工作情况,以及人员、装备与工作间协作方面存在的问题,并对相应对策提出思考。结果:基地化训练任务中,配置的超声仪相对落后,但心电图机基本可以满足野战条件下诊断救治需要;野战医疗队落实新编制后,医疗保障组人员略有减少,任务相对加重,但通过合理安排工作及加强通信设施配置亦可满足保障需要。结论:野战医疗队的特诊专业人员需要提高医疗专业技能与野战急救技术;装备上需要配备更加先进的心电、超声诊断仪器;同时需加强全队人员组间、组内磨合,才能更好地发挥特诊技师在野战医疗队中的作用。 展开更多
关键词 超声诊断仪 特诊保障 训练 基地化 心电图仪
下载PDF
Heart Disease Classification Using Multiple K-PCA and Hybrid Deep Learning Approach 被引量:1
17
作者 S.Kusuma Dr.Jothi K.R 《Computer Systems Science & Engineering》 SCIE EI 2022年第6期1273-1289,共17页
One of the severe health problems and the most common types of heartdisease (HD) is Coronary heart disease (CHD). Due to the lack of a healthy lifestyle, HD would cause frequent mortality worldwide. If the heart atta... One of the severe health problems and the most common types of heartdisease (HD) is Coronary heart disease (CHD). Due to the lack of a healthy lifestyle, HD would cause frequent mortality worldwide. If the heart attack occurswithout any symptoms, it cannot be cured by an intelligent detection system.An effective diagnosis and detection of CHD should prevent human casualties.Moreover, intelligent systems employ clinical-based decision support approachesto assist physicians in providing another option for diagnosing and detecting HD.This paper aims to introduce a heart disease prediction model including phaseslike (i) Feature extraction, (ii) Feature selection, and (iii) Classification. At first,the feature extraction process is carried out, where the features like a time-domainindex, frequency-domain index, geometrical domain features, nonlinear features,WT features, signal energy, skewness, entropy, kurtosis features are extractedfrom the input ECG signal. The curse of dimensionality becomes a severe issue.This paper provides the solution for this issue by introducing a new ModifiedPrincipal Component Analysis known as Multiple Kernel-based PCA for dimensionality reduction. Furthermore, the dimensionally reduced feature set is thensubjected to a classification process, where the hybrid classifier combining bothRecurrent Neural Network (RNN) and Restricted Boltzmann Machine (RBM)is used. At last, the performance analysis of the adopted scheme is compared overother existing schemes in terms of specific measures. 展开更多
关键词 Heart disease prediction ecg recurrent neural network pca restricted boltzmann machine
下载PDF
图像测量系统在心电图机检定中的运用 被引量:2
18
作者 金鑫 《计量与测试技术》 2018年第6期58-59,62,共3页
该文提出运用图像测量系统,针对心电图机及数字心电图机检定的记录进行图像测量及数据分析处理。通过图像测量系统组成的介绍、测量过程的叙述、不确定度的分析,得出该方法在保证测量准确性的同时降低了心电波形测量的难度,同时易上手,... 该文提出运用图像测量系统,针对心电图机及数字心电图机检定的记录进行图像测量及数据分析处理。通过图像测量系统组成的介绍、测量过程的叙述、不确定度的分析,得出该方法在保证测量准确性的同时降低了心电波形测量的难度,同时易上手,可推广。 展开更多
关键词 心电图机 图像测量 检定 不确定度 扫描仪 Digimizer EXCEL
下载PDF
ECG—6511型心电图机无心电波形等故障维修三例 被引量:1
19
作者 王成辉 《中国医疗设备》 2008年第11期112-113,共2页
介绍了无心电波形,V6导联无波形和心电信号严重失真等三例故障的分析与维修过程。
关键词 心电图机 心电波形 医疗设备维修
下载PDF
浅谈热敏打印机芯设计 被引量:1
20
作者 余联锭 《机械研究与应用》 2016年第3期97-100,共4页
目前,热敏打印机已在POS终端系统、银行系统、医疗仪器等领域得到广泛应用。主要对热敏打印机设计进行分析。阐述多热敏打印机设计参数,介绍其主要设计结构及特点。从而达到优化设计,满足生产实际需求。
关键词 热敏打印机 TPH热敏纸 标签 碳带 收银机 心电图仪 排队机 步进电机 光藕
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部