Heart monitoring improves life quality.Electrocardiograms(ECGs or EKGs)detect heart irregularities.Machine learning algorithms can create a few ECG diagnosis processing methods.The first method uses raw ECG and time-s...Heart monitoring improves life quality.Electrocardiograms(ECGs or EKGs)detect heart irregularities.Machine learning algorithms can create a few ECG diagnosis processing methods.The first method uses raw ECG and time-series data.The second method classifies the ECG by patient experience.The third technique translates ECG impulses into Q waves,R waves and S waves(QRS)features using richer information.Because ECG signals vary naturally between humans and activities,we will combine the three feature selection methods to improve classification accuracy and diagnosis.Classifications using all three approaches have not been examined till now.Several researchers found that Machine Learning(ML)techniques can improve ECG classification.This study will compare popular machine learning techniques to evaluate ECG features.Four algorithms—Support Vector Machine(SVM),Decision Tree,Naive Bayes,and Neural Network—compare categorization results.SVM plus prior knowledge has the highest accuracy(99%)of the four ML methods.QRS characteristics failed to identify signals without chaos theory.With 99.8%classification accuracy,the Decision Tree technique outperformed all previous experiments.展开更多
Adequate oxygen in red blood cells carrying through the body to the heart and brain is important to maintain life.For those patients requiring blood,blood transfusion is a common procedure in which donated blood or bl...Adequate oxygen in red blood cells carrying through the body to the heart and brain is important to maintain life.For those patients requiring blood,blood transfusion is a common procedure in which donated blood or blood components are given through an intravenous line.However,detecting the need for blood transfusion is time-consuming and sometimes not easily diagnosed,such as internal bleeding.This study considered physiological signals such as electrocardiogram(ECG),photoplethysmogram(PPG),blood pressure,oxygen saturation(SpO2),and respiration,and proposed the machine learning model to detect the need for blood transfusion accurately.For the model,this study extracted 14 features from the physiological signals and used an ensemble approach combining extreme gradient boosting and random forest.The model was evaluated by a stratified five-fold crossvalidation:the detection accuracy and area under the receiver operating characteristics were 92.7%and 0.977,respectively.展开更多
With new developments experienced in Internet of Things(IoT),wearable,and sensing technology,the value of healthcare services has enhanced.This evolution has brought significant changes from conventional medicine-base...With new developments experienced in Internet of Things(IoT),wearable,and sensing technology,the value of healthcare services has enhanced.This evolution has brought significant changes from conventional medicine-based healthcare to real-time observation-based healthcare.Biomedical Electrocardiogram(ECG)signals are generally utilized in examination and diagnosis of Cardiovascular Diseases(CVDs)since it is quick and non-invasive in nature.Due to increasing number of patients in recent years,the classifier efficiency gets reduced due to high variances observed in ECG signal patterns obtained from patients.In such scenario computer-assisted automated diagnostic tools are important for classification of ECG signals.The current study devises an Improved Bat Algorithm with Deep Learning Based Biomedical ECGSignal Classification(IBADL-BECGC)approach.To accomplish this,the proposed IBADL-BECGC model initially pre-processes the input signals.Besides,IBADL-BECGC model applies NasNet model to derive the features from test ECG signals.In addition,Improved Bat Algorithm(IBA)is employed to optimally fine-tune the hyperparameters related to NasNet approach.Finally,Extreme Learning Machine(ELM)classification algorithm is executed to perform ECG classification method.The presented IBADL-BECGC model was experimentally validated utilizing benchmark dataset.The comparison study outcomes established the improved performance of IBADL-BECGC model over other existing methodologies since the former achieved a maximum accuracy of 97.49%.展开更多
The inherently unique qualities of the heart infer the candidacy for the domain of biometrics, which applies physiological attributes to establish the recognition of a person’s identity. The heart’s characteristics ...The inherently unique qualities of the heart infer the candidacy for the domain of biometrics, which applies physiological attributes to establish the recognition of a person’s identity. The heart’s characteristics can be ascertained by recording the electrical signal activity of the heart through the acquisition of an electrocardiogram (ECG). With the application of machine learning the subject specific ECG signal can be differentiated. However, the process of distinguishing subjects through machine learning may be considered esoteric, especially for contributing subject matter experts external to the domain of machine learning. A resolution to this dilemma is the application of the J48 decision tree available through the Waikato Environment for Knowledge Analysis (WEKA). The J48 decision tree elucidates the machine learning process through a visualized decision tree that attains classification accuracy through the application of thresholds applied to the numeric attributes of the feature set. Additionally, the numeric attributes of the feature set for the application of the J48 decision tree are derived from the temporal organization of the ECG signal maxima and minima for the respective P, Q, R, S, and T waves. The J48 decision tree achieves considerable classification accuracy for the distinction of subjects based on their ECG signal, for which the machine learning model is briskly composed.展开更多
The attributes of the ECG signal signifying the unique electrical properties of the heart offer the opportunity to expand the realm of biometrics, which pertains the identification of an individual based on physical c...The attributes of the ECG signal signifying the unique electrical properties of the heart offer the opportunity to expand the realm of biometrics, which pertains the identification of an individual based on physical characteristics. The temporal organization of the ECG signal offers a basis for composing a machine learning feature set. The four attributes of the feature set are derived through software automation enabled by Python. These four attributes are the temporal differential of the P wave maximum and T wave maximum relative to the R wave maximum and the Q wave minimum and S wave minimum relative to the R wave maximum. The multilayer perceptron neural network was applied and evaluated in terms of classification accuracy and time to develop the model. Superior performance was achieved with respect to a reduced feature set considering only the temporal differential of the P wave maximum and T wave maximum relative to the R wave maximum by comparison to all four attributes applied to the feature set and the temporal differential of the Q wave minimum and S wave minimum relative to the R wave maximum. With these preliminary findings and the advent of portable and wearable devices for the acquisition of the ECG signal, the temporal organization of the ECG signal offers robust potential for the field of biometrics.展开更多
One of the severe health problems and the most common types of heartdisease (HD) is Coronary heart disease (CHD). Due to the lack of a healthy lifestyle, HD would cause frequent mortality worldwide. If the heart atta...One of the severe health problems and the most common types of heartdisease (HD) is Coronary heart disease (CHD). Due to the lack of a healthy lifestyle, HD would cause frequent mortality worldwide. If the heart attack occurswithout any symptoms, it cannot be cured by an intelligent detection system.An effective diagnosis and detection of CHD should prevent human casualties.Moreover, intelligent systems employ clinical-based decision support approachesto assist physicians in providing another option for diagnosing and detecting HD.This paper aims to introduce a heart disease prediction model including phaseslike (i) Feature extraction, (ii) Feature selection, and (iii) Classification. At first,the feature extraction process is carried out, where the features like a time-domainindex, frequency-domain index, geometrical domain features, nonlinear features,WT features, signal energy, skewness, entropy, kurtosis features are extractedfrom the input ECG signal. The curse of dimensionality becomes a severe issue.This paper provides the solution for this issue by introducing a new ModifiedPrincipal Component Analysis known as Multiple Kernel-based PCA for dimensionality reduction. Furthermore, the dimensionally reduced feature set is thensubjected to a classification process, where the hybrid classifier combining bothRecurrent Neural Network (RNN) and Restricted Boltzmann Machine (RBM)is used. At last, the performance analysis of the adopted scheme is compared overother existing schemes in terms of specific measures.展开更多
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups(Grant Number RGP.2/246/44),B.B.,and https://www.kku.edu.sa/en.
文摘Heart monitoring improves life quality.Electrocardiograms(ECGs or EKGs)detect heart irregularities.Machine learning algorithms can create a few ECG diagnosis processing methods.The first method uses raw ECG and time-series data.The second method classifies the ECG by patient experience.The third technique translates ECG impulses into Q waves,R waves and S waves(QRS)features using richer information.Because ECG signals vary naturally between humans and activities,we will combine the three feature selection methods to improve classification accuracy and diagnosis.Classifications using all three approaches have not been examined till now.Several researchers found that Machine Learning(ML)techniques can improve ECG classification.This study will compare popular machine learning techniques to evaluate ECG features.Four algorithms—Support Vector Machine(SVM),Decision Tree,Naive Bayes,and Neural Network—compare categorization results.SVM plus prior knowledge has the highest accuracy(99%)of the four ML methods.QRS characteristics failed to identify signals without chaos theory.With 99.8%classification accuracy,the Decision Tree technique outperformed all previous experiments.
基金This work was supported by the Korea Medical Device Development Fund from the Korean government(the Ministry of Science and ICTMinistry of Trade,Indus-try and Energy+2 种基金Ministry of Health and Welfareand Ministry of Food and Drug Safety)(KMDF_PR_20200901_0095)the Soonchunhyang University Research Fund.
文摘Adequate oxygen in red blood cells carrying through the body to the heart and brain is important to maintain life.For those patients requiring blood,blood transfusion is a common procedure in which donated blood or blood components are given through an intravenous line.However,detecting the need for blood transfusion is time-consuming and sometimes not easily diagnosed,such as internal bleeding.This study considered physiological signals such as electrocardiogram(ECG),photoplethysmogram(PPG),blood pressure,oxygen saturation(SpO2),and respiration,and proposed the machine learning model to detect the need for blood transfusion accurately.For the model,this study extracted 14 features from the physiological signals and used an ensemble approach combining extreme gradient boosting and random forest.The model was evaluated by a stratified five-fold crossvalidation:the detection accuracy and area under the receiver operating characteristics were 92.7%and 0.977,respectively.
基金the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under Grant Number(71/43)Princess Nourah Bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R203)Princess Nourah Bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4310373DSR29).
文摘With new developments experienced in Internet of Things(IoT),wearable,and sensing technology,the value of healthcare services has enhanced.This evolution has brought significant changes from conventional medicine-based healthcare to real-time observation-based healthcare.Biomedical Electrocardiogram(ECG)signals are generally utilized in examination and diagnosis of Cardiovascular Diseases(CVDs)since it is quick and non-invasive in nature.Due to increasing number of patients in recent years,the classifier efficiency gets reduced due to high variances observed in ECG signal patterns obtained from patients.In such scenario computer-assisted automated diagnostic tools are important for classification of ECG signals.The current study devises an Improved Bat Algorithm with Deep Learning Based Biomedical ECGSignal Classification(IBADL-BECGC)approach.To accomplish this,the proposed IBADL-BECGC model initially pre-processes the input signals.Besides,IBADL-BECGC model applies NasNet model to derive the features from test ECG signals.In addition,Improved Bat Algorithm(IBA)is employed to optimally fine-tune the hyperparameters related to NasNet approach.Finally,Extreme Learning Machine(ELM)classification algorithm is executed to perform ECG classification method.The presented IBADL-BECGC model was experimentally validated utilizing benchmark dataset.The comparison study outcomes established the improved performance of IBADL-BECGC model over other existing methodologies since the former achieved a maximum accuracy of 97.49%.
文摘The inherently unique qualities of the heart infer the candidacy for the domain of biometrics, which applies physiological attributes to establish the recognition of a person’s identity. The heart’s characteristics can be ascertained by recording the electrical signal activity of the heart through the acquisition of an electrocardiogram (ECG). With the application of machine learning the subject specific ECG signal can be differentiated. However, the process of distinguishing subjects through machine learning may be considered esoteric, especially for contributing subject matter experts external to the domain of machine learning. A resolution to this dilemma is the application of the J48 decision tree available through the Waikato Environment for Knowledge Analysis (WEKA). The J48 decision tree elucidates the machine learning process through a visualized decision tree that attains classification accuracy through the application of thresholds applied to the numeric attributes of the feature set. Additionally, the numeric attributes of the feature set for the application of the J48 decision tree are derived from the temporal organization of the ECG signal maxima and minima for the respective P, Q, R, S, and T waves. The J48 decision tree achieves considerable classification accuracy for the distinction of subjects based on their ECG signal, for which the machine learning model is briskly composed.
文摘The attributes of the ECG signal signifying the unique electrical properties of the heart offer the opportunity to expand the realm of biometrics, which pertains the identification of an individual based on physical characteristics. The temporal organization of the ECG signal offers a basis for composing a machine learning feature set. The four attributes of the feature set are derived through software automation enabled by Python. These four attributes are the temporal differential of the P wave maximum and T wave maximum relative to the R wave maximum and the Q wave minimum and S wave minimum relative to the R wave maximum. The multilayer perceptron neural network was applied and evaluated in terms of classification accuracy and time to develop the model. Superior performance was achieved with respect to a reduced feature set considering only the temporal differential of the P wave maximum and T wave maximum relative to the R wave maximum by comparison to all four attributes applied to the feature set and the temporal differential of the Q wave minimum and S wave minimum relative to the R wave maximum. With these preliminary findings and the advent of portable and wearable devices for the acquisition of the ECG signal, the temporal organization of the ECG signal offers robust potential for the field of biometrics.
文摘One of the severe health problems and the most common types of heartdisease (HD) is Coronary heart disease (CHD). Due to the lack of a healthy lifestyle, HD would cause frequent mortality worldwide. If the heart attack occurswithout any symptoms, it cannot be cured by an intelligent detection system.An effective diagnosis and detection of CHD should prevent human casualties.Moreover, intelligent systems employ clinical-based decision support approachesto assist physicians in providing another option for diagnosing and detecting HD.This paper aims to introduce a heart disease prediction model including phaseslike (i) Feature extraction, (ii) Feature selection, and (iii) Classification. At first,the feature extraction process is carried out, where the features like a time-domainindex, frequency-domain index, geometrical domain features, nonlinear features,WT features, signal energy, skewness, entropy, kurtosis features are extractedfrom the input ECG signal. The curse of dimensionality becomes a severe issue.This paper provides the solution for this issue by introducing a new ModifiedPrincipal Component Analysis known as Multiple Kernel-based PCA for dimensionality reduction. Furthermore, the dimensionally reduced feature set is thensubjected to a classification process, where the hybrid classifier combining bothRecurrent Neural Network (RNN) and Restricted Boltzmann Machine (RBM)is used. At last, the performance analysis of the adopted scheme is compared overother existing schemes in terms of specific measures.