A box model of the interhemispheric thermohaline circulation (THC) in atmosphere-ocean for global climate is considered. By using the generalized variational iteration method, the approximate solution of a simplifie...A box model of the interhemispheric thermohaline circulation (THC) in atmosphere-ocean for global climate is considered. By using the generalized variational iteration method, the approximate solution of a simplified nonlinear model is studied. The generalized variational iteration method is an analytic method, and the obtained analytic solution can be operated sequentially. The authors also diversify qualitative and quantitative behaviors for corresponding physical quantities.展开更多
A coupled system of the interdecadal sea-air oscillator model is studied. The E1 Nifio-southem oscillation (ENSO) atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmo...A coupled system of the interdecadal sea-air oscillator model is studied. The E1 Nifio-southem oscillation (ENSO) atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The oscillator model is involved with the variations of both the eastern and western Pacific anomaly pat- terns. This paper proposes an ENSO atmospheric physics model using a method of the perturbation theory. The aim is to create an asymptotic solving method for the ENSO model. Employing the perturbed method, the asymptotic solution of corresponding problem is obtained, and the asymptotic behaviour of the solution is studied. Thus we can obtain the prognoses of the sea surface temperature anomaly and related physical quantities.展开更多
The gridded (1/3°*1/3°) altimetry data from October 1992 through December 2004 were analyzed to study the seasonal and interannual variabilities of the bifurcation of the North Equatorial Current (NEC) ...The gridded (1/3°*1/3°) altimetry data from October 1992 through December 2004 were analyzed to study the seasonal and interannual variabilities of the bifurcation of the North Equatorial Current (NEC) at the surface in the western North Pacific Ocean. Calculations show that on annual average the bifurcation occurs at about 13.4°N at the surface. The geostrophic flow derived from Sea Surface Height (SSH) data shows that the southernmost latitude of the NEC bifurcation at the surface is about 12.9°N in June and the northernmost latitude is about 14.1°N in December. Correlation analyses between the bifurcation latitude and the Southern Oscillation Index (SOl) suggest that the bifurcation latitude is highly correlated with the E1 Nino/Southern Oscillation (ENSO) events. During the E1 Nino years the bifurcation of the NEC takes place at higher latitudes and vice versa.展开更多
This paper presents a review on the impact of El Nio on the interannual variability of atmospheric circulations over East Asia and rainfall in China through the anomalous anticyclone over western North Pacific(WNPAC)....This paper presents a review on the impact of El Nio on the interannual variability of atmospheric circulations over East Asia and rainfall in China through the anomalous anticyclone over western North Pacific(WNPAC). It explains the formation mechanisms of the WNPAC and physical processes by which the WNPAC affects the rainfall in China. During the mature phase of El Nio, the convective cooling anomalies over western tropical Pacific caused by the weakened convections trigger up an atmospheric Rossby wave response, resulting in the generation of the WNPAC. The WNPAC can persist from the winter when the El Nio is in its peak to subsequent summer, which is maintained by multiple factors including the sustained presence of convective cooling anomalies and the local air-sea interaction over western tropical Pacific, and the persistence of sea surface temperature anomalies(SSTA) in tropical Indian and tropical North Atlantic. The WNPAC can influence the atmospheric circulations over East Asia and rainfall in China not only simultaneously, but also in the subsequent summer after an El Nio year, leading to more rainfall over southern China. The current paper also points out that significant anomalies of atmospheric circulations over East Asia and rainfall over southern China occur in El Nio winter but not in La Nio winter, suggesting that El Nio and La Nio have an asymmetric effect. Other issues, including the impact of El Nio diversity and its impact as well as the relations of the factors affecting the persistence of the WNPAC with summer rainfall anomalies in China, are also discussed. At the end of this paper some issues calling for further investigation are discussed.展开更多
Objective: To evaluate whether liposomal prostaglandin E1 (lipo-PGE1) can decrease reperfusion no-reflow in a catheter-based porcine model of acute myocardial infarction (AMI). Methods: Twenty-two male Chinese m...Objective: To evaluate whether liposomal prostaglandin E1 (lipo-PGE1) can decrease reperfusion no-reflow in a catheter-based porcine model of acute myocardial infarction (AMI). Methods: Twenty-two male Chinese mini-swines were randomized into three groups: six in a sham-operation group, and eight each in the control and lipo-PGE1 groups. The distal part of the left anterior descending coronary artery (LAD) in the latter two groups was completely occluded for 2 h, and then reperfused for 3 h. Lipo-PGE1 (1 pg/kg) was injected 10 min before LAD occlusion until reperfusion for 1 h in the lipo-PGE1 group. Hemodynamic data and proinflammatory cytokines were examined before AMI, 2 h after occlusion, and 1, 2, and 3 h after reperfusion. Myocardial contrast echocardiography (MCE) and double staining were performed to evaluate the myocardial no-reflow area (NRA). Results: Left ventricular systolic pressure and end-diastolic pressure significantly improved in the lipo-PGE1 group after reperfusion compared with the control group and also 2 h after AMI (P〈0.05 for both). MCE and double staining both showed that lipo-PGE1 decreased reperfusion NRA after AMI (P〈0.05, P〈0.01). Lipo-PGE1 decreased serum interleukin-6 (IL-6) and tumor necrosis factor-a (TNF-a) after myocardial infarction reperfusion (P〈0.05 for both). Conclusions: Lipo-PGE1 is cardioprotective in our porcine model of myocardial infarction reperfusion no-reflow, decreasing NRA and attenuating the inflammatory response.展开更多
The tropical Pacific is currently experiencing an El Nifio event. Various coupled models with different degrees of complexity have been used to make real-time E1 Nifio predictions, but large uncertainties exist in the...The tropical Pacific is currently experiencing an El Nifio event. Various coupled models with different degrees of complexity have been used to make real-time E1 Nifio predictions, but large uncertainties exist in the inten- sity forecast and are strongly model dependent. An intermediate coupled model (ICM) is used at the Institute of Oceanology, Chinese Academy of Sciences (IOCAS), named the IOCAS ICM, to predict the sea surface temper- ature (SST) evolution in the tropical Pacific during the 2015-2016 E! Nifio event. One unique feature of the IOCAS ICM is the way in which the temperature of subsurface water entrained in the mixed layer (Te) is parameterized. Observed SST anomalies are only field that is utilized to initialize the coupled prediction using the IOCAS ICM. Examples are given of the model's ability to predict the SST conditions in a real-time manner. As is commonly evident in E1 Nifio- Southern Oscillation predictions using coupled models, large discrepancies occur between the observed and pre- dicted SST anomalies in spring 2015. Starting from early summer 2015, the model can realistically predict warming conditions. Thereafter, good predictions can be made through the summer and fall seasons of 2015. A transition to normal and cold conditions is predictecl to occur in rote spring 2016. Comparisons with other model predictions are made and factors influencing the prediction performance of the IOCAS ICM are also discussed.展开更多
Spinal nerve roots have a peculiar structure, different from the arrangements in the peripheral nerve. The nerve roots are devoid of lymphatic vessels but are immersed in the cerebrospinal fluid(CSF) within the subara...Spinal nerve roots have a peculiar structure, different from the arrangements in the peripheral nerve. The nerve roots are devoid of lymphatic vessels but are immersed in the cerebrospinal fluid(CSF) within the subarachnoid space. The blood supply of nerve roots depends on the blood flow from both and peripheral direction(ascending) and the spinal cord direction(descending). There is no hypovascular region in the nerve root, although there exists a so-called water-shed of the bloodstream in the radicular artery itself. Increased mechanical compression promotes the disturbance of CSF flow, circulatory disturbance starting from the venous congestion and intraradicular edema formation resulting from the breakdown of the blood-nerve barrier. Although this edema may diffuse into CSF when the subarachnoid space is preserved, the endoneurial fluid pressure may increase when the area is closed by increased compression. On the other hand, the nerve root tissue has already degenerated under the compression and the numerous macrophages releasing various chemical mediators, aggravating radicular symptomsthat appear in the area of Wallerian degeneration. Prostaglandin E1(PGE1) is a potent vasodilator as well as an inhibitor of platelet aggregation and has therefore attracted interest as a therapeutic drug for lumbar canal stenosis. However, investigations in the clinical setting have shown that PGE1 is effective in some patients but not in others, although the reason for this is unclear.展开更多
A class of E1 Niйo atmospheric physics oscillation model is considered. The E1 Niйo atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The conce...A class of E1 Niйo atmospheric physics oscillation model is considered. The E1 Niйo atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The conceptual oscillator model should consider the variations of both the eastern and western Pacific anomaly patterns. An E1 Niйo atmospheric physics model is proposed using a method for the variational iteration theory. Using the variational iteration method, the approximate expansions of the solution of corresponding problem are constructed. That is, firstly, introducing a set of functional and accounting their variationals, the Lagrange multiplicators are counted, and then the variational iteration is defined, finally, the approximate solution is obtained. From approximate expansions of the solution, the zonal sea surface temperature anomaly in the equatorial eastern Pacific and the thermocline depth anomaly of the sea-air oscillation for E1 Niйo atmospheric physics model can be analyzed. E1 Niйo is a very complicated natural phenomenon. Hence basic models need to be reduced for the sea-air oscillator and are solved. The variational iteration is a simple and valid approximate method.展开更多
The oceanic and atmospheric conditions and the related climate impacts of the 2015/16 ENSO cycle were analyzed,based on the latest global climate observational data,especially that of China.The results show that this ...The oceanic and atmospheric conditions and the related climate impacts of the 2015/16 ENSO cycle were analyzed,based on the latest global climate observational data,especially that of China.The results show that this strong El Nino event fully established in spring 2015 and has been rapidly developing into one of the three strongest El Nino episodes in recorded history.Meanwhile,it is also expected to be the longest event recorded,attributable to the stable maintenance of the abnormally warm conditions in the equatorial Pacific Ocean since spring 2014.Owing to the impacts of this strong event,along with climate warming background,the global surface temperature and the surface air temperature over Chinese mainland reached record highs in 2015.Disastrous weather in various places worldwide have occurred in association with this severe El Nino episode,and summer precipitation has reduced significantly in North China,especially over the bend of the Yellow River,central Inner Mongolia,and the coastal areas surrounding Bohai Bay.Serious drought has occurred in some of the above areas.The El Nino episode reached its peak strength during November-December 2015,when a lower-troposphere anomalous anticyclonic circulation prevailed over the Philippines,bringing about abnormal southerlies and substantially increased precipitation in southeastern China.At the same time,a negative phase of the Eurasia-Pacific teleconnection pattern dominated over the mid-high latitudes,which suppressed northerly winds in North China.These two factors together resulted in high concentrations of fine particulate matter(PM2.5) and frequent haze weather in this region.Currently,this strong El Nino is weakening very rapidly,but its impact on climate will continue in the coming months in some regions,especially in China.展开更多
基金This research is supported by the National Natural Science Foundation of China under Grant Nos. 40576012 and 90111011, the State Key Development Program for Basics Research of China under Grant No. 2004CB418304, the Key Project of the Chinese Academy of Sciences under Grant No. KZCX3-SW-221 and in part by E- Institutes of Shanghai Municipal Education Commission under Grant No. E03004.
文摘A box model of the interhemispheric thermohaline circulation (THC) in atmosphere-ocean for global climate is considered. By using the generalized variational iteration method, the approximate solution of a simplified nonlinear model is studied. The generalized variational iteration method is an analytic method, and the obtained analytic solution can be operated sequentially. The authors also diversify qualitative and quantitative behaviors for corresponding physical quantities.
基金Under the auspices of National Natural Science Foundation of China (No.40876010)Key Direction in Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-Q03-08)+2 种基金Research and Development Special Fund for Public Welfare Industry (Meteorology) (No. GYHY200806010)LASG State Key Laboratory Special Fund, Foundation of E-Institutes of Shanghai Municipal Education Commission (No.E03004)Natural Science Foundation of Education Department of Fujian Province (No.JA10288)
文摘A coupled system of the interdecadal sea-air oscillator model is studied. The E1 Nifio-southem oscillation (ENSO) atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The oscillator model is involved with the variations of both the eastern and western Pacific anomaly pat- terns. This paper proposes an ENSO atmospheric physics model using a method of the perturbation theory. The aim is to create an asymptotic solving method for the ENSO model. Employing the perturbed method, the asymptotic solution of corresponding problem is obtained, and the asymptotic behaviour of the solution is studied. Thus we can obtain the prognoses of the sea surface temperature anomaly and related physical quantities.
基金Project supported by the National Natural Science Foundation of China (Grants Nos: D06-40552002, 40576016) the Qingdao Municipal Bureau of Science and Technology (Grant No: 02-KJYSH-03).
文摘The gridded (1/3°*1/3°) altimetry data from October 1992 through December 2004 were analyzed to study the seasonal and interannual variabilities of the bifurcation of the North Equatorial Current (NEC) at the surface in the western North Pacific Ocean. Calculations show that on annual average the bifurcation occurs at about 13.4°N at the surface. The geostrophic flow derived from Sea Surface Height (SSH) data shows that the southernmost latitude of the NEC bifurcation at the surface is about 12.9°N in June and the northernmost latitude is about 14.1°N in December. Correlation analyses between the bifurcation latitude and the Southern Oscillation Index (SOl) suggest that the bifurcation latitude is highly correlated with the E1 Nino/Southern Oscillation (ENSO) events. During the E1 Nino years the bifurcation of the NEC takes place at higher latitudes and vice versa.
基金supported by the National Key Project for Basic Science Development (Grant No. 2015CB453203)the National Key Research and Development Program (Grant No. 2016YFA0600602)the National Natural Science Foundation of China (Grant No. 41661144017)
文摘This paper presents a review on the impact of El Nio on the interannual variability of atmospheric circulations over East Asia and rainfall in China through the anomalous anticyclone over western North Pacific(WNPAC). It explains the formation mechanisms of the WNPAC and physical processes by which the WNPAC affects the rainfall in China. During the mature phase of El Nio, the convective cooling anomalies over western tropical Pacific caused by the weakened convections trigger up an atmospheric Rossby wave response, resulting in the generation of the WNPAC. The WNPAC can persist from the winter when the El Nio is in its peak to subsequent summer, which is maintained by multiple factors including the sustained presence of convective cooling anomalies and the local air-sea interaction over western tropical Pacific, and the persistence of sea surface temperature anomalies(SSTA) in tropical Indian and tropical North Atlantic. The WNPAC can influence the atmospheric circulations over East Asia and rainfall in China not only simultaneously, but also in the subsequent summer after an El Nio year, leading to more rainfall over southern China. The current paper also points out that significant anomalies of atmospheric circulations over East Asia and rainfall over southern China occur in El Nio winter but not in La Nio winter, suggesting that El Nio and La Nio have an asymmetric effect. Other issues, including the impact of El Nio diversity and its impact as well as the relations of the factors affecting the persistence of the WNPAC with summer rainfall anomalies in China, are also discussed. At the end of this paper some issues calling for further investigation are discussed.
基金Project (No. 03III02) supported by the Capital Medical Development Research Fund of China
文摘Objective: To evaluate whether liposomal prostaglandin E1 (lipo-PGE1) can decrease reperfusion no-reflow in a catheter-based porcine model of acute myocardial infarction (AMI). Methods: Twenty-two male Chinese mini-swines were randomized into three groups: six in a sham-operation group, and eight each in the control and lipo-PGE1 groups. The distal part of the left anterior descending coronary artery (LAD) in the latter two groups was completely occluded for 2 h, and then reperfused for 3 h. Lipo-PGE1 (1 pg/kg) was injected 10 min before LAD occlusion until reperfusion for 1 h in the lipo-PGE1 group. Hemodynamic data and proinflammatory cytokines were examined before AMI, 2 h after occlusion, and 1, 2, and 3 h after reperfusion. Myocardial contrast echocardiography (MCE) and double staining were performed to evaluate the myocardial no-reflow area (NRA). Results: Left ventricular systolic pressure and end-diastolic pressure significantly improved in the lipo-PGE1 group after reperfusion compared with the control group and also 2 h after AMI (P〈0.05 for both). MCE and double staining both showed that lipo-PGE1 decreased reperfusion NRA after AMI (P〈0.05, P〈0.01). Lipo-PGE1 decreased serum interleukin-6 (IL-6) and tumor necrosis factor-a (TNF-a) after myocardial infarction reperfusion (P〈0.05 for both). Conclusions: Lipo-PGE1 is cardioprotective in our porcine model of myocardial infarction reperfusion no-reflow, decreasing NRA and attenuating the inflammatory response.
基金the National Natural Science Foundation of China(41490644,41475101 and41421005)the CAS Strategic Priority Project+1 种基金the Western Pacific Ocean System(XDA11010105,XDA11020306 and XDA11010301)the NSFC-Shandong Joint Fund for Marine Science Research Centers(U1406401)
文摘The tropical Pacific is currently experiencing an El Nifio event. Various coupled models with different degrees of complexity have been used to make real-time E1 Nifio predictions, but large uncertainties exist in the inten- sity forecast and are strongly model dependent. An intermediate coupled model (ICM) is used at the Institute of Oceanology, Chinese Academy of Sciences (IOCAS), named the IOCAS ICM, to predict the sea surface temper- ature (SST) evolution in the tropical Pacific during the 2015-2016 E! Nifio event. One unique feature of the IOCAS ICM is the way in which the temperature of subsurface water entrained in the mixed layer (Te) is parameterized. Observed SST anomalies are only field that is utilized to initialize the coupled prediction using the IOCAS ICM. Examples are given of the model's ability to predict the SST conditions in a real-time manner. As is commonly evident in E1 Nifio- Southern Oscillation predictions using coupled models, large discrepancies occur between the observed and pre- dicted SST anomalies in spring 2015. Starting from early summer 2015, the model can realistically predict warming conditions. Thereafter, good predictions can be made through the summer and fall seasons of 2015. A transition to normal and cold conditions is predictecl to occur in rote spring 2016. Comparisons with other model predictions are made and factors influencing the prediction performance of the IOCAS ICM are also discussed.
基金Supported by Grant-in Aid from the Ministry of Education,Science and Culture of Japan,No,25460719
文摘Spinal nerve roots have a peculiar structure, different from the arrangements in the peripheral nerve. The nerve roots are devoid of lymphatic vessels but are immersed in the cerebrospinal fluid(CSF) within the subarachnoid space. The blood supply of nerve roots depends on the blood flow from both and peripheral direction(ascending) and the spinal cord direction(descending). There is no hypovascular region in the nerve root, although there exists a so-called water-shed of the bloodstream in the radicular artery itself. Increased mechanical compression promotes the disturbance of CSF flow, circulatory disturbance starting from the venous congestion and intraradicular edema formation resulting from the breakdown of the blood-nerve barrier. Although this edema may diffuse into CSF when the subarachnoid space is preserved, the endoneurial fluid pressure may increase when the area is closed by increased compression. On the other hand, the nerve root tissue has already degenerated under the compression and the numerous macrophages releasing various chemical mediators, aggravating radicular symptomsthat appear in the area of Wallerian degeneration. Prostaglandin E1(PGE1) is a potent vasodilator as well as an inhibitor of platelet aggregation and has therefore attracted interest as a therapeutic drug for lumbar canal stenosis. However, investigations in the clinical setting have shown that PGE1 is effective in some patients but not in others, although the reason for this is unclear.
文摘A class of E1 Niйo atmospheric physics oscillation model is considered. The E1 Niйo atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The conceptual oscillator model should consider the variations of both the eastern and western Pacific anomaly patterns. An E1 Niйo atmospheric physics model is proposed using a method for the variational iteration theory. Using the variational iteration method, the approximate expansions of the solution of corresponding problem are constructed. That is, firstly, introducing a set of functional and accounting their variationals, the Lagrange multiplicators are counted, and then the variational iteration is defined, finally, the approximate solution is obtained. From approximate expansions of the solution, the zonal sea surface temperature anomaly in the equatorial eastern Pacific and the thermocline depth anomaly of the sea-air oscillation for E1 Niйo atmospheric physics model can be analyzed. E1 Niйo is a very complicated natural phenomenon. Hence basic models need to be reduced for the sea-air oscillator and are solved. The variational iteration is a simple and valid approximate method.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2012CB417205)National Natural Science Foundation of China(41575094)
文摘The oceanic and atmospheric conditions and the related climate impacts of the 2015/16 ENSO cycle were analyzed,based on the latest global climate observational data,especially that of China.The results show that this strong El Nino event fully established in spring 2015 and has been rapidly developing into one of the three strongest El Nino episodes in recorded history.Meanwhile,it is also expected to be the longest event recorded,attributable to the stable maintenance of the abnormally warm conditions in the equatorial Pacific Ocean since spring 2014.Owing to the impacts of this strong event,along with climate warming background,the global surface temperature and the surface air temperature over Chinese mainland reached record highs in 2015.Disastrous weather in various places worldwide have occurred in association with this severe El Nino episode,and summer precipitation has reduced significantly in North China,especially over the bend of the Yellow River,central Inner Mongolia,and the coastal areas surrounding Bohai Bay.Serious drought has occurred in some of the above areas.The El Nino episode reached its peak strength during November-December 2015,when a lower-troposphere anomalous anticyclonic circulation prevailed over the Philippines,bringing about abnormal southerlies and substantially increased precipitation in southeastern China.At the same time,a negative phase of the Eurasia-Pacific teleconnection pattern dominated over the mid-high latitudes,which suppressed northerly winds in North China.These two factors together resulted in high concentrations of fine particulate matter(PM2.5) and frequent haze weather in this region.Currently,this strong El Nino is weakening very rapidly,but its impact on climate will continue in the coming months in some regions,especially in China.