目标分群能够将战场目标划分为作战空间群,从而降低态势估计难度,提高决策效率。故针对战场中的目标分群问题,提出了一种基于流形距离(manifold)的密度峰值快速搜索聚类算法(clustering by fast search and find of density peaks,CFSF...目标分群能够将战场目标划分为作战空间群,从而降低态势估计难度,提高决策效率。故针对战场中的目标分群问题,提出了一种基于流形距离(manifold)的密度峰值快速搜索聚类算法(clustering by fast search and find of density peaks,CFSFDP)的目标分群方法。该方法将目标分群转化为数据集聚类问题,通过计算目标间的流形距离来衡量目标间的相似度,然后在流形距离的基础上利用CFSFDP算法搜索聚类中心,指定其余数据点类别。仿真实验以人工数据集和UCI数据集为对象,验证了M-CFSFDP算法聚类效果优于CFSFDP算法;同时将M-CFSFDP应用在战场目标静态与动态分群中,仿真结果表明了该方法的正确性与有效性。展开更多
【目的】针对原有布谷鸟算法在求解最优化问题时的不足,提出一种基于动态分组与高斯扰动的改进布谷鸟搜索算法(Gaussian perturbating and dynamic grouping for cuckoo search,GPDGCS)。【方法】GPDGCS算法在原有布谷鸟算法的求解过程...【目的】针对原有布谷鸟算法在求解最优化问题时的不足,提出一种基于动态分组与高斯扰动的改进布谷鸟搜索算法(Gaussian perturbating and dynamic grouping for cuckoo search,GPDGCS)。【方法】GPDGCS算法在原有布谷鸟算法的求解过程中应用了高斯扰动与动态分组策略。【结果】通过6个典型的测试函数对GPDGCS算法进行仿真实验,结果表明GPDGCS算法比原有布谷鸟算法有更高的收敛速度、求解精度等。【结论】GPDGCS算法在一定程度上可避免算法陷入局部最优。展开更多
文摘目标分群能够将战场目标划分为作战空间群,从而降低态势估计难度,提高决策效率。故针对战场中的目标分群问题,提出了一种基于流形距离(manifold)的密度峰值快速搜索聚类算法(clustering by fast search and find of density peaks,CFSFDP)的目标分群方法。该方法将目标分群转化为数据集聚类问题,通过计算目标间的流形距离来衡量目标间的相似度,然后在流形距离的基础上利用CFSFDP算法搜索聚类中心,指定其余数据点类别。仿真实验以人工数据集和UCI数据集为对象,验证了M-CFSFDP算法聚类效果优于CFSFDP算法;同时将M-CFSFDP应用在战场目标静态与动态分群中,仿真结果表明了该方法的正确性与有效性。
文摘【目的】针对原有布谷鸟算法在求解最优化问题时的不足,提出一种基于动态分组与高斯扰动的改进布谷鸟搜索算法(Gaussian perturbating and dynamic grouping for cuckoo search,GPDGCS)。【方法】GPDGCS算法在原有布谷鸟算法的求解过程中应用了高斯扰动与动态分组策略。【结果】通过6个典型的测试函数对GPDGCS算法进行仿真实验,结果表明GPDGCS算法比原有布谷鸟算法有更高的收敛速度、求解精度等。【结论】GPDGCS算法在一定程度上可避免算法陷入局部最优。