Dust suppression in coal mines is a worldwide problem which has not been solved effectively. The applica-tion of negative pressure secondary dust removal (NPSDR) is a breakthrough in the coal mine safety field. In thi...Dust suppression in coal mines is a worldwide problem which has not been solved effectively. The applica-tion of negative pressure secondary dust removal (NPSDR) is a breakthrough in the coal mine safety field. In this paper,NPSDR technology and ultrasonic dust suppression systems are introduced. High pressure water is supplied to the NPSDR device which is mounted on the shearer. A negative pressure field is formed in the device. At the same time,the dusty air around the shearer drum will be sucked into,and purged from,the NPSDR device by the negative pressure field. An ultrasonic dust suppression system uses water and compressed air to produce micron sized droplets which suppress respirable coal dust effectively. The NPSDR technology can be used for shearer dust suppression while ultra-sonic dust suppression can be applied in areas such as the transportation positions. These dust suppression methods have the following advantages: high efficiency,wide applicability,simple structure,high reliability and low cost.展开更多
In order to reveal the influence of forced ventilation on the dispersion of droplets ejected from roadheader-mounted external sprayer,the paper studies the air-flowing field and the droplet distribution under the cond...In order to reveal the influence of forced ventilation on the dispersion of droplets ejected from roadheader-mounted external sprayer,the paper studies the air-flowing field and the droplet distribution under the condition of gentle breeze and normal forced ventilation in heading face using the particle tracking technology of computational fluid dynamics(CFD).The results show that air-flowing tendency in the same section presents great comparability in the period of gentle breeze and forced ventilation,and the difference mainly embodies in the different wind velocity.The influence of ventilation on the dispersion of droplets is faint under the gentle breeze condition.The droplet can be evenly distributed around the cutting head.However,under the normal forced ventilation,a large number of droplets will drift to the return air side.At the same time,droplet clusters are predominantly presented in the lower part of windward side and the middle of the leeward side around the cutting head.In contrast,the droplet concentration in other parts around cutting head decreases a lot and the droplets are unable to form close-grained mist curtain.So the dust escape channel is formed.In addition,the simulation results also reveal that the disturbance of air flow on the droplet distribution can be effectively relieved when using ventilation duct with Coanda effect(VDCE).Field experiment results show that the dust suppression efficiency of total dust and respirable dust increases respectively by 10.5%and 9.3%when using VDCE,which proves that it can weaken the influence of airflow on droplet dispersion.展开更多
One of the main origins of fugitive dust emission arises from bulk handling in quarries or mines, in particular, from bulk materials falling from a hopper or a conveyor belt. Water-spraying systems, using two-phase no...One of the main origins of fugitive dust emission arises from bulk handling in quarries or mines, in particular, from bulk materials falling from a hopper or a conveyor belt. Water-spraying systems, using two-phase nozzles, are one of the methods to suppress such dust emission. In this work we tried to develop a mathematical model to correlate air humidity, water flux through the nozzle and the dust (in particular PM10) emission, in order to improve the application and efficiency of these systems. Sand from the Yellow River in China was dropped from a conveyor belt into a dust chamber at 1 kg·min^-1, wherefrom the emitted dust was sucked off and quantified via a cascade impactor. A two-phase nozzle was installed in the dust chamber with a water flux through the nozzle of 1.2 to 3 L·h^-1, whereas the relative air humidity changed between 55 and 73%. Dust emission was found to be linearly dependent on relative air humidity. Furthermore model equations were developed to describe the dependence of PM10 emission on water flux and relative air humidity.展开更多
文摘Dust suppression in coal mines is a worldwide problem which has not been solved effectively. The applica-tion of negative pressure secondary dust removal (NPSDR) is a breakthrough in the coal mine safety field. In this paper,NPSDR technology and ultrasonic dust suppression systems are introduced. High pressure water is supplied to the NPSDR device which is mounted on the shearer. A negative pressure field is formed in the device. At the same time,the dusty air around the shearer drum will be sucked into,and purged from,the NPSDR device by the negative pressure field. An ultrasonic dust suppression system uses water and compressed air to produce micron sized droplets which suppress respirable coal dust effectively. The NPSDR technology can be used for shearer dust suppression while ultra-sonic dust suppression can be applied in areas such as the transportation positions. These dust suppression methods have the following advantages: high efficiency,wide applicability,simple structure,high reliability and low cost.
基金supported by the Program for Postgraduates Research Innovation in University of Jiangsu Province of China (No.CXLX13_955)the National Natural Science Foundation of China (No.51104153)
文摘In order to reveal the influence of forced ventilation on the dispersion of droplets ejected from roadheader-mounted external sprayer,the paper studies the air-flowing field and the droplet distribution under the condition of gentle breeze and normal forced ventilation in heading face using the particle tracking technology of computational fluid dynamics(CFD).The results show that air-flowing tendency in the same section presents great comparability in the period of gentle breeze and forced ventilation,and the difference mainly embodies in the different wind velocity.The influence of ventilation on the dispersion of droplets is faint under the gentle breeze condition.The droplet can be evenly distributed around the cutting head.However,under the normal forced ventilation,a large number of droplets will drift to the return air side.At the same time,droplet clusters are predominantly presented in the lower part of windward side and the middle of the leeward side around the cutting head.In contrast,the droplet concentration in other parts around cutting head decreases a lot and the droplets are unable to form close-grained mist curtain.So the dust escape channel is formed.In addition,the simulation results also reveal that the disturbance of air flow on the droplet distribution can be effectively relieved when using ventilation duct with Coanda effect(VDCE).Field experiment results show that the dust suppression efficiency of total dust and respirable dust increases respectively by 10.5%and 9.3%when using VDCE,which proves that it can weaken the influence of airflow on droplet dispersion.
文摘One of the main origins of fugitive dust emission arises from bulk handling in quarries or mines, in particular, from bulk materials falling from a hopper or a conveyor belt. Water-spraying systems, using two-phase nozzles, are one of the methods to suppress such dust emission. In this work we tried to develop a mathematical model to correlate air humidity, water flux through the nozzle and the dust (in particular PM10) emission, in order to improve the application and efficiency of these systems. Sand from the Yellow River in China was dropped from a conveyor belt into a dust chamber at 1 kg·min^-1, wherefrom the emitted dust was sucked off and quantified via a cascade impactor. A two-phase nozzle was installed in the dust chamber with a water flux through the nozzle of 1.2 to 3 L·h^-1, whereas the relative air humidity changed between 55 and 73%. Dust emission was found to be linearly dependent on relative air humidity. Furthermore model equations were developed to describe the dependence of PM10 emission on water flux and relative air humidity.