This paper is concerned with the robust adaptive fault-tolerant control of a tandem coaxial ducted fan aircraft under system uncertainty, mismatched disturbance, and actuator saturation.For the proposed aircraft, comp...This paper is concerned with the robust adaptive fault-tolerant control of a tandem coaxial ducted fan aircraft under system uncertainty, mismatched disturbance, and actuator saturation.For the proposed aircraft, comprehensive controllability analysis is performed to evaluate the controllability of each state as well as the margin to reject mismatched disturbance without any knowledge of the controller. Mismatched disturbance attenuation is ensured through a structured Hinfinity controller tuned by a non-smooth optimization algorithm. Embedded with the H-infinity controller, an adaptive control law is proposed in order to mitigate matched system uncertainty and actuator fault. Input saturation is also considered by the modified reference model. Numerical simulation of the novel ducted fan aircraft is provided to illustrate the effectiveness of the proposed method. The simulation results reveal that the proposed adaptive controller achieves better transient response and more robust performance than classic Model Reference Adaptive Control(MRAC) method, even with serious actuator saturation.展开更多
Ducted fans have been extensively used in Unmanned Aerial Vehicles(UAVs)for a variety of missions because of high efficiency,high safety and low noise.Wind,as a kind of typical meteorological condition,brings signific...Ducted fans have been extensively used in Unmanned Aerial Vehicles(UAVs)for a variety of missions because of high efficiency,high safety and low noise.Wind,as a kind of typical meteorological condition,brings significant aerodynamic interference to the ducted fan,which seriously threatens flight stability and safety.In this work,the numerical simulation with the Unsteady Reynolds Averaged Navier-Stokes(URANS)method and the sliding mesh technique is performed to evaluate the steady wind effect.The results show that the wind will lead to serious unsteady effects in the flow field,and the thrust fluctuates at the blade passing frequency of 200 Hz.As the wind speed increases,the rotor thrust increases,the duct thrust decreases,and the total thrust changes little.Flow instability may occur when the wind speed exceeds 8 m/s.As the angle of low-speed wind increases,the rotor thrust changes little,the duct thrust increases,and the total thrust increases.In addition,we figure out that cases with the same crosswind ratio are similar in results,and increasing the rotating speed or fan radius is beneficial to performance improvement in wind.The findings are essential to the ducted fan design and UAV flight control design for stable and safe operations in wind conditions.展开更多
Ducted fans are widely used in various applications of Unmanned Aerial Vehicles(UAVs)due to the high efficiency,low noise and high safety.The unsteady characteristics of ducted fans flying near the ground are signific...Ducted fans are widely used in various applications of Unmanned Aerial Vehicles(UAVs)due to the high efficiency,low noise and high safety.The unsteady characteristics of ducted fans flying near the ground are significant,which may bring stability problems.In this paper,the sliding mesh technology is applied and the Unsteady Reynolds Averaged Navier-Stokes(URANS)method is adopted to evaluate the influence of ground on the aerodynamic performance of ducted fans.The time-averaged results show that the ground leads to the decrease of duct thrust,the increase of rotor thrust and the decrease of total thrust.The transient results show that there exist small-scale stall cells with circumferential movements in ground effect.The stall cells start to appear at the blade root when the height is 0.8 rotor radius distance,and arise at both the blade root and tip when the height drops to 0.2.It is found that the unsteady cells rotate between blade passages with an approximate relative speed of 30%-80%of the fan speed,and lead to thrust fluctuations up to 37%of the total thrust.The results are essential to the flight control design of the ducted fan flying vehicle,to ensure its stability in ground effect.展开更多
Ducted fans have been widely used in VTOL aircraft due to the high propulsion efficiency and safety.The efficiency and stability of ducted fans deteriorate in some flight conditions such as hovering in crosswinds or g...Ducted fans have been widely used in VTOL aircraft due to the high propulsion efficiency and safety.The efficiency and stability of ducted fans deteriorate in some flight conditions such as hovering in crosswinds or ground effect.It is necessary to optimize the ducted fan’s structures or apply flow control methods for better adaptions to the typical conditions.This paper presents a detailed review on the ducted fan technology for VTOL applications,especially the methods for improving its efficiency and stability.We first simplified the classification categories based on boundary conditions instead of flight conditions,since the new classification method covers more situations and is easier to distinguish flow field characteristics.The flow characteristics,thrust properties and the optimal structures under different boundary conditions were summarized and discussed.Finally,new configurations and flow control methods for increasing the efficiency and stability were introduced.The newly proposed integration design between the ducted fan and the motor was emphasized for increasing the power density of the ducted fans.This review would be helpful to improve our understanding of the relationship between the structures,flow characteristics and thrust properties of ducted fans under different flight conditions,and inspires scientists to design high-efficiency and high-stability propulsion systems with ducted fans.展开更多
A new numerical method was developed for predicting the steady hydrodynamic performance of ducted propellers. A potential based surface panel method was applied both to the duct and the propeller, and the interaction ...A new numerical method was developed for predicting the steady hydrodynamic performance of ducted propellers. A potential based surface panel method was applied both to the duct and the propeller, and the interaction between them was solved by an induced velocity potential iterative method. Compared with the induced velocity iterative method, the method presented can save programming and calculating time. Numerical results for a JD simplified ducted propeller series showed that the method presented is effective for predicting the steady hydrodynamic performance of ducted propellers.展开更多
An integrated hydrodynamics and control model to simulate tethered underwater robot system is proposed. The governing equation of the umbilical cable is based on a finite difference method, the hydrodynamic behaviors ...An integrated hydrodynamics and control model to simulate tethered underwater robot system is proposed. The governing equation of the umbilical cable is based on a finite difference method, the hydrodynamic behaviors of the underwater robot are described by the six-degrees-of-freedom equations of motion for submarine simulations, and a controller based on the fuzzy sliding mode control(FSMC) algorithm is also incorporated. Fluid motion around the main body of moving robot with running control ducted propellers is governed by the Navier–Stokes equations and these nonlinear differential equations are solved numerically via computational fluid dynamics(CFD) technique. The hydrodynamics and control behaviors of the tethered underwater robot under certain designated trajectory and attitude control manipulation are then investigated based on the established hydrodynamics and control model. The results indicate that satisfactory control effect can be achieved and hydrodynamic behavior under the control operation can be observed with the model; much kinematic and dynamic information about tethered underwater robot system can be forecasted, including translational and angular motions of the robot, hydrodynamic loading on the robot, manipulation actions produced by the control propellers, the kinematic and dynamic behaviors of the umbilical cable. Since these hydrodynamic effects are fed into the proposed coupled model, the mutual hydrodynamic influences of different portions of the robot system as well as the hydrological factors of the undersea environment for the robot operation are incorporated in the model.展开更多
In recent years,Remotely Operated Vehicles(ROVs)have played an increasingly important role in the construc-tion and monitoring of underwater pile foundations.However,due to the open frame structure of such vehicles,a ...In recent years,Remotely Operated Vehicles(ROVs)have played an increasingly important role in the construc-tion and monitoring of underwater pile foundations.However,due to the open frame structure of such vehicles,a gap of knowledge still exists with regard to their hydrodynamic behavior.In this study,the hydrodynamic stability of such vehicles is investigated numerically by means of a multiple reference frame method.The hydrodynamic characteristics of the ROV when it moves horizontally and upward in the vertical plane are examined.It is found that there is interference between the horizontal and vertical thrusters of the ROV.There is also interference between the propeller thrust and drag(or lift).The effect of the vertical thrusters can increase the horizontal thrust by about 5%.The horizontal thrusters create a low-pressure area below the body,which can make vertical drag experienced by the ROV significantly higher.展开更多
Shaftless ducted rotor(SDR)is a new type of ducted rotor system designed with ducted-rotor-motor integration,which is quite different from traditional ducted rotor(DR)in aerodynamic characteristics.The sliding mesh ba...Shaftless ducted rotor(SDR)is a new type of ducted rotor system designed with ducted-rotor-motor integration,which is quite different from traditional ducted rotor(DR)in aerodynamic characteristics.The sliding mesh based on unstructured grid is used to simulate the aerodynamic characteristics of SDR and DR.Then,the effects of five key parameters,namely,the rotor disk height,the number of blades,the spread angle of the duct,the central hole radius and the ducted lip radius on the aerodynamic characteristics of the SDR are investigated.It is found that the same-sized SDR produces a larger total lift than the DR in hovering,but the lift proportion of its duct is reduced.In the forward flight,a large low-speed region is generated behind the SDR duct,and the reflux vortex in blade root above the advancing blade has the trend for inward diffusion.The rotor disk height has similar effects on SDR and DR.Increasing the number of blades can effectively increase the total lift of SDR,which also increases the lift proportion of duct.Increasing the spread angle of the duct will lead to the rotor lift coefficient decrease,reducing the central hole radius can increase the total lift,but the component lift coefficient decreases.Appropriately increasing the ducted lip radius can increase the total lift,which begins to decrease after reaching a certain value.展开更多
Based on investigations into the flow field of ducted fan aircrafts,structural parameters of duct are quantified.A three-dimensional model is established for numerical simulation,and adaptive Cartesian grid is used to...Based on investigations into the flow field of ducted fan aircrafts,structural parameters of duct are quantified.A three-dimensional model is established for numerical simulation,and adaptive Cartesian grid is used to mesh the model in order to improve calculation speed and solution accuracy.Three-dimensional Navier-Stokes equations are brought in to analyze different duct styles.Generalization of simulation results leads to several conclusions in duct aerodynamics to help design ducted fan aircrafts.展开更多
A fully automated optimization process is provided for the design of ducted propellers under open water conditions, including 3D geometry modeling, meshing, optimization algorithm and CFD analysis techniques. The deve...A fully automated optimization process is provided for the design of ducted propellers under open water conditions, including 3D geometry modeling, meshing, optimization algorithm and CFD analysis techniques. The developed process allows the direct integration of a RANSE solver in the design stage. A practical ducted propeller design case study is carried out for validation. Numerical simulations and open water tests are fulfilled and proved that the optimum ducted propeller improves hydrodynamic performance as predicted.展开更多
The structure and modeling of a novel unmanned coaxial rotor ducted fan helicopter(RDFH)are introduced,and then,based on the helicopter air dynamics and kinematics principles,a nonlinear model of the coaxial rotor duc...The structure and modeling of a novel unmanned coaxial rotor ducted fan helicopter(RDFH)are introduced,and then,based on the helicopter air dynamics and kinematics principles,a nonlinear model of the coaxial rotor ducted fan helicopter is developed and implemented on the basis of the wind tunnel experiment.After that,the helicopter′s stability and coupling characteristics of manipulation are analyzed through time-domain.Finally,a sliding mode controller(SMC)with boundary layers is developed on a hardware in the loop platform using digital signal processor(DSP)as the flight control computer.The results show that the RDFH′s tracking ability performs well under the use of proposed controller.展开更多
In order to analyze the hydrodynamic performance of the ducted propeller with high precision, this paper proposes a new method which combines Multi-Block Hybrid Mesh and Reynolds Stress Model (MBHM & RSM). The cal...In order to analyze the hydrodynamic performance of the ducted propeller with high precision, this paper proposes a new method which combines Multi-Block Hybrid Mesh and Reynolds Stress Model (MBHM & RSM). The calculation errors of MBHM & RSM and standard two-equation model (standard k-ε model) on the ducted propeller JD7704 +Ka4-55 are compared. The maximum error of the total thrust coefficient KT, the duct thrust coefficient KTN, the torque coefficient KQ and the open-water efficiency η0 of MBHM & RSM are 2.98%, 4.01%, 1.46%, and 0.89%, respectively, which are lower than those of standard k-ε model. Indeed, the pressure distribution on the propeller surfaces, the pressure and the velocity vector distribution of the flow field are also analyzed, which are consistent with the theory. It is demonstrated that MBHM & RSM on the thruster dynamics analysis are feasible. This paper provides reference in the thruster designing of underwater robot.展开更多
We present a study on the second-order resonant interaction between the ring current protons with Whistler-mode waves propagating near the quasi electrostatic limit following the previous second-order resonant theory....We present a study on the second-order resonant interaction between the ring current protons with Whistler-mode waves propagating near the quasi electrostatic limit following the previous second-order resonant theory. The diffusion coefficients are proportional to the electric field amplitude E, much greater than those for the regular first-order resonance, which are proportional to the electric field amplitudes square E^2. Numerical calculations for the pitch angle scattering are performed for typical energies of protons Ek = 50 keV and 100 keV at locations L = 2 and L = 3.5. The timescale for the loss process of protons by the Whistler waves is found to approach one hour, comparable to that by the EMIC waves, suggesting that Whistler waves may also contribute significantly to the ring current decay under appropriate conditions.展开更多
This paper presents an effective method for computing the internal and external viscous flow field around the ducted propulsor behind an axisymmetric they by using a new Navier-Stokes equations solver with primitive v...This paper presents an effective method for computing the internal and external viscous flow field around the ducted propulsor behind an axisymmetric they by using a new Navier-Stokes equations solver with primitive variable continuity equation formulation. In the present numerical method, the calculation equation for pressure with well-defined coefficient,which form is similar to the artificial compressibility method, is developed. A semi-staggered grid system is adopted. Not only the advantage of staggered grid system can be retained but the boundary conditions on the inner and outer surface of the duct can be also carried out easily. By using a special grid system and the programming technique for implementing the jump boundary condition on the duct surfaces, the internal and external viscous flow field around the ducted propulsor behind the axisymmetric they may be calculated integrally in an unified numbered grid system. Some configurations are calculated and compared with experimental date and numerical results of other methods. Illustrative calculations are also presented for a stern of axisymmetric body with the backstep fitted a duct to illustrate the capability of the present method. Beside that, the effect of axial distribution of they force is considered and discussed in order to extend the application range of the present method.展开更多
An innovative idea of extracting kinetic energy from man-made wind resources using ducted turbine system for on-site power generation is introduced in this paper. A horizontal axis ducted turbine is attached to the to...An innovative idea of extracting kinetic energy from man-made wind resources using ducted turbine system for on-site power generation is introduced in this paper. A horizontal axis ducted turbine is attached to the top of the chimney to harness the kinetic energy of flue gases for producing electricity. The turbine system is positioned beyond the chimney outlet, to avoid any negative impact on the chimney performance. The convergentdivergent duct causes increase in the flue gas velocity and hence enhances the performance of the turbine. It also acts as a safety cover to the energy recovery system. The results from the CFD based simulation analysis indicate that sig- nificant power 34 kW can be harnessed from the chimney exhaust. The effect of airfoils NACA4412 and NACA4416 and the diffuser angle on the power extraction by the energy recovery system using a 6-bladed ducted turbine has been studied with the CFD simulation. It is observed that the average flue gas velocity in the duct section at the throat is approximately twice that of the inlet velocity, whereas maximum velocity achieved is 2.6 times the inlet velocity. The simulated results show that about power may be extracted from the chimney flue gases of 660 MW power plant. The system can be retrofitted to existing chimneys of thermal power plants, refineries and other industries.展开更多
Inlet distortion is one of the main factors for the degradation of aerodynamic performance and stability margin of the compressor in practical operation. Due to the change of the inlet shape and the large amount of in...Inlet distortion is one of the main factors for the degradation of aerodynamic performance and stability margin of the compressor in practical operation. Due to the change of the inlet shape and the large amount of inhalation of the body Boundary Layer, the ducted thrust fan of the Boundary Layer Ingestion (BLI) propulsion system inevitably works in the intake distortion condition. In this paper, the ducted thrust fan in a BLI propulsion system is taken as the research object. The influence of radial and circumferential total pressure distortion on the inlet section of the ducted thrust fan caused by boundary layer suction and inlet shape is studied by steady single channel and fullloop numerical simulation. The influence law of distortion intensity and distortion range of the two types of distortion patterns of the distortion map is analyzed emphatically. The results show that :(1) the greater the range and intensity of the radial total pressure distortion are, the more affected the performance of the ducted thrust fan is;(2) The aero-dynamic performance decline amplitude of the ducted thrust fan increases with the increase of the intensity of the circumferential total pressure distortion;The transmission law of the circumferential total pressure distortion intensity along the inlet and outlet of the fan is almost the same. Different working conditions have influence on the attenuation degree of the circumferential total pressure distortion in the ducted thrust fan, and the attenuation range of the circumferential total pressure distortion in the design working condition is the largest.展开更多
To improve the operational efficiency of global optimization in engineering, Kriging model was established to simplify the mathematical model for calculations. Ducted coaxial-rotors aircraft was taken as an example an...To improve the operational efficiency of global optimization in engineering, Kriging model was established to simplify the mathematical model for calculations. Ducted coaxial-rotors aircraft was taken as an example and Fluent software was applied to the virtual prototype simulations. Through simulation sample points, the total lift of the ducted coaxial-rotors aircraft was obtained. The Kriging model was then constructed, and the function was fitted. Improved particle swarm optimization(PSO) was also utilized for the global optimization of the Kriging model of the ducted coaxial-rotors aircraft for the determination of optimized global coordinates. Finally, the optimized results were simulated by Fluent. The results show that the Kriging model and the improved PSO algorithm significantly improve the lift performance of ducted coaxial-rotors aircraft and computer operational efficiency.展开更多
This paper focuses on the ducted propulsion with the accelerating nozzle,and discusses the influence of its fluid acceleration quality on its propulsive performances,including the hull efficiency,the relative rotative...This paper focuses on the ducted propulsion with the accelerating nozzle,and discusses the influence of its fluid acceleration quality on its propulsive performances,including the hull efficiency,the relative rotative efficiency,the effective wake,and the thrust deduction factor.An actual ducted propulsion system is used as an example for computational analysis.The computational conditions are divided into four combinations,which are provided with different propeller pitches,cambers,and duct lengths.Themethod applied in this study is the Computational Fluid Dynamics(CFD)technology,and the contents of the calculation include the hull’s viscous resistance,the wave-making resistance,the propeller performance curve,and the self-propulsion simulation in order to obtain the ship’s effective wake,thrust deduction factor,hull efficiency,and relative rotative efficiency.The performance curve of the propeller and resistance estimation results are compared with the experimental values for determining the correctness of the self-propulsion simulation.According to the computational analysis,it is known that increasing the propeller pitch cannot effectively increase the hull efficiency.The duct acceleration quality can be reduced by shortening the duct length;hence,when the effective wake fraction and thrust deduction factor decrease,the hull efficiency is increased.In addition,the pressure inside the duct is relatively low if the acceleration quality of the duct is too high,which is unfavorable for controlling the propeller cavitation.Moreover,if the hull bottom in front of the propeller is tapered up from the front to the back at an overly steep angle,the thrust deduction factor will be too large and lead to a relatively low hull efficiency.展开更多
The effectiveness of the Vectored Thrust Ducted Propeller(VTDP)system is not high currently,especially the lateral force is not large enough.Thus,a conceptual design for a deflection device of a VTDP system was propos...The effectiveness of the Vectored Thrust Ducted Propeller(VTDP)system is not high currently,especially the lateral force is not large enough.Thus,a conceptual design for a deflection device of a VTDP system was proposed to achieve effective hovering control.The magnitude of the lateral force that was applied to maintain balance while hovering was examined.A comparison between the experimental and numerical results for the 16H-1 was made to verify the numerical simulation approach.The deflection devices of the X-49 and the proposed design were analyzed using numerical simulations.The results indicated that a larger lateral force and lower power consumption were presented in the proposed design.The results of this article provide a new idea for the design of the VTDP system.展开更多
文摘This paper is concerned with the robust adaptive fault-tolerant control of a tandem coaxial ducted fan aircraft under system uncertainty, mismatched disturbance, and actuator saturation.For the proposed aircraft, comprehensive controllability analysis is performed to evaluate the controllability of each state as well as the margin to reject mismatched disturbance without any knowledge of the controller. Mismatched disturbance attenuation is ensured through a structured Hinfinity controller tuned by a non-smooth optimization algorithm. Embedded with the H-infinity controller, an adaptive control law is proposed in order to mitigate matched system uncertainty and actuator fault. Input saturation is also considered by the modified reference model. Numerical simulation of the novel ducted fan aircraft is provided to illustrate the effectiveness of the proposed method. The simulation results reveal that the proposed adaptive controller achieves better transient response and more robust performance than classic Model Reference Adaptive Control(MRAC) method, even with serious actuator saturation.
基金This study was co-supported by the National Key Research and Development Program of China(No.2020YFC1512500),The Advanced Aviation Power Innovation institution,The Aero Engine Academy of China,and Tsinghua University Initiative Scientific Research Program,China.
文摘Ducted fans have been extensively used in Unmanned Aerial Vehicles(UAVs)for a variety of missions because of high efficiency,high safety and low noise.Wind,as a kind of typical meteorological condition,brings significant aerodynamic interference to the ducted fan,which seriously threatens flight stability and safety.In this work,the numerical simulation with the Unsteady Reynolds Averaged Navier-Stokes(URANS)method and the sliding mesh technique is performed to evaluate the steady wind effect.The results show that the wind will lead to serious unsteady effects in the flow field,and the thrust fluctuates at the blade passing frequency of 200 Hz.As the wind speed increases,the rotor thrust increases,the duct thrust decreases,and the total thrust changes little.Flow instability may occur when the wind speed exceeds 8 m/s.As the angle of low-speed wind increases,the rotor thrust changes little,the duct thrust increases,and the total thrust increases.In addition,we figure out that cases with the same crosswind ratio are similar in results,and increasing the rotating speed or fan radius is beneficial to performance improvement in wind.The findings are essential to the ducted fan design and UAV flight control design for stable and safe operations in wind conditions.
基金co-supported by the National Key Research and Development Program of China(No.2020YFC1512500)The Advanced Aviation Power Innovation institution,The Aero Engine Academy of ChinaTsinghua University Initiative Scientific Research Program.
文摘Ducted fans are widely used in various applications of Unmanned Aerial Vehicles(UAVs)due to the high efficiency,low noise and high safety.The unsteady characteristics of ducted fans flying near the ground are significant,which may bring stability problems.In this paper,the sliding mesh technology is applied and the Unsteady Reynolds Averaged Navier-Stokes(URANS)method is adopted to evaluate the influence of ground on the aerodynamic performance of ducted fans.The time-averaged results show that the ground leads to the decrease of duct thrust,the increase of rotor thrust and the decrease of total thrust.The transient results show that there exist small-scale stall cells with circumferential movements in ground effect.The stall cells start to appear at the blade root when the height is 0.8 rotor radius distance,and arise at both the blade root and tip when the height drops to 0.2.It is found that the unsteady cells rotate between blade passages with an approximate relative speed of 30%-80%of the fan speed,and lead to thrust fluctuations up to 37%of the total thrust.The results are essential to the flight control design of the ducted fan flying vehicle,to ensure its stability in ground effect.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFC1512500)the Advanced Aviation Power Innovation Institution,the Aero Engine Academy of ChinaTsinghua University Initiative Scientific Research Program。
文摘Ducted fans have been widely used in VTOL aircraft due to the high propulsion efficiency and safety.The efficiency and stability of ducted fans deteriorate in some flight conditions such as hovering in crosswinds or ground effect.It is necessary to optimize the ducted fan’s structures or apply flow control methods for better adaptions to the typical conditions.This paper presents a detailed review on the ducted fan technology for VTOL applications,especially the methods for improving its efficiency and stability.We first simplified the classification categories based on boundary conditions instead of flight conditions,since the new classification method covers more situations and is easier to distinguish flow field characteristics.The flow characteristics,thrust properties and the optimal structures under different boundary conditions were summarized and discussed.Finally,new configurations and flow control methods for increasing the efficiency and stability were introduced.The newly proposed integration design between the ducted fan and the motor was emphasized for increasing the power density of the ducted fans.This review would be helpful to improve our understanding of the relationship between the structures,flow characteristics and thrust properties of ducted fans under different flight conditions,and inspires scientists to design high-efficiency and high-stability propulsion systems with ducted fans.
基金Supported by the Open Research Foundation of State Key Laboratory of AUV,HEU under Grant No.2007015
文摘A new numerical method was developed for predicting the steady hydrodynamic performance of ducted propellers. A potential based surface panel method was applied both to the duct and the propeller, and the interaction between them was solved by an induced velocity potential iterative method. Compared with the induced velocity iterative method, the method presented can save programming and calculating time. Numerical results for a JD simplified ducted propeller series showed that the method presented is effective for predicting the steady hydrodynamic performance of ducted propellers.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.11372112 and 10772068)
文摘An integrated hydrodynamics and control model to simulate tethered underwater robot system is proposed. The governing equation of the umbilical cable is based on a finite difference method, the hydrodynamic behaviors of the underwater robot are described by the six-degrees-of-freedom equations of motion for submarine simulations, and a controller based on the fuzzy sliding mode control(FSMC) algorithm is also incorporated. Fluid motion around the main body of moving robot with running control ducted propellers is governed by the Navier–Stokes equations and these nonlinear differential equations are solved numerically via computational fluid dynamics(CFD) technique. The hydrodynamics and control behaviors of the tethered underwater robot under certain designated trajectory and attitude control manipulation are then investigated based on the established hydrodynamics and control model. The results indicate that satisfactory control effect can be achieved and hydrodynamic behavior under the control operation can be observed with the model; much kinematic and dynamic information about tethered underwater robot system can be forecasted, including translational and angular motions of the robot, hydrodynamic loading on the robot, manipulation actions produced by the control propellers, the kinematic and dynamic behaviors of the umbilical cable. Since these hydrodynamic effects are fed into the proposed coupled model, the mutual hydrodynamic influences of different portions of the robot system as well as the hydrological factors of the undersea environment for the robot operation are incorporated in the model.
基金supported by the Major Special Science and Technology Project(2019B10076)of“Ningbo Science and Technology Innovation 2025”.
文摘In recent years,Remotely Operated Vehicles(ROVs)have played an increasingly important role in the construc-tion and monitoring of underwater pile foundations.However,due to the open frame structure of such vehicles,a gap of knowledge still exists with regard to their hydrodynamic behavior.In this study,the hydrodynamic stability of such vehicles is investigated numerically by means of a multiple reference frame method.The hydrodynamic characteristics of the ROV when it moves horizontally and upward in the vertical plane are examined.It is found that there is interference between the horizontal and vertical thrusters of the ROV.There is also interference between the propeller thrust and drag(or lift).The effect of the vertical thrusters can increase the horizontal thrust by about 5%.The horizontal thrusters create a low-pressure area below the body,which can make vertical drag experienced by the ROV significantly higher.
基金supported by the National Defense Science and Technology Key Laboratory Fund(No.6142220180511)Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Shaftless ducted rotor(SDR)is a new type of ducted rotor system designed with ducted-rotor-motor integration,which is quite different from traditional ducted rotor(DR)in aerodynamic characteristics.The sliding mesh based on unstructured grid is used to simulate the aerodynamic characteristics of SDR and DR.Then,the effects of five key parameters,namely,the rotor disk height,the number of blades,the spread angle of the duct,the central hole radius and the ducted lip radius on the aerodynamic characteristics of the SDR are investigated.It is found that the same-sized SDR produces a larger total lift than the DR in hovering,but the lift proportion of its duct is reduced.In the forward flight,a large low-speed region is generated behind the SDR duct,and the reflux vortex in blade root above the advancing blade has the trend for inward diffusion.The rotor disk height has similar effects on SDR and DR.Increasing the number of blades can effectively increase the total lift of SDR,which also increases the lift proportion of duct.Increasing the spread angle of the duct will lead to the rotor lift coefficient decrease,reducing the central hole radius can increase the total lift,but the component lift coefficient decreases.Appropriately increasing the ducted lip radius can increase the total lift,which begins to decrease after reaching a certain value.
文摘Based on investigations into the flow field of ducted fan aircrafts,structural parameters of duct are quantified.A three-dimensional model is established for numerical simulation,and adaptive Cartesian grid is used to mesh the model in order to improve calculation speed and solution accuracy.Three-dimensional Navier-Stokes equations are brought in to analyze different duct styles.Generalization of simulation results leads to several conclusions in duct aerodynamics to help design ducted fan aircrafts.
基金financially supported by the National Natural Science Foundation of China(Grant No.51009090)the State Key Laboratory of Ocean Engineering(Grant No.GKZD010063)
文摘A fully automated optimization process is provided for the design of ducted propellers under open water conditions, including 3D geometry modeling, meshing, optimization algorithm and CFD analysis techniques. The developed process allows the direct integration of a RANSE solver in the design stage. A practical ducted propeller design case study is carried out for validation. Numerical simulations and open water tests are fulfilled and proved that the optimum ducted propeller improves hydrodynamic performance as predicted.
基金supported by the National Natural Science Foundation of China(Nos.6130422361374116+1 种基金61503185)Specialized Research Fund for the Doctoral Program of Higher Education(20123218120015)
文摘The structure and modeling of a novel unmanned coaxial rotor ducted fan helicopter(RDFH)are introduced,and then,based on the helicopter air dynamics and kinematics principles,a nonlinear model of the coaxial rotor ducted fan helicopter is developed and implemented on the basis of the wind tunnel experiment.After that,the helicopter′s stability and coupling characteristics of manipulation are analyzed through time-domain.Finally,a sliding mode controller(SMC)with boundary layers is developed on a hardware in the loop platform using digital signal processor(DSP)as the flight control computer.The results show that the RDFH′s tracking ability performs well under the use of proposed controller.
文摘In order to analyze the hydrodynamic performance of the ducted propeller with high precision, this paper proposes a new method which combines Multi-Block Hybrid Mesh and Reynolds Stress Model (MBHM & RSM). The calculation errors of MBHM & RSM and standard two-equation model (standard k-ε model) on the ducted propeller JD7704 +Ka4-55 are compared. The maximum error of the total thrust coefficient KT, the duct thrust coefficient KTN, the torque coefficient KQ and the open-water efficiency η0 of MBHM & RSM are 2.98%, 4.01%, 1.46%, and 0.89%, respectively, which are lower than those of standard k-ε model. Indeed, the pressure distribution on the propeller surfaces, the pressure and the velocity vector distribution of the flow field are also analyzed, which are consistent with the theory. It is demonstrated that MBHM & RSM on the thruster dynamics analysis are feasible. This paper provides reference in the thruster designing of underwater robot.
基金Supported by the National Natural Science Foundation of China under Grant Nos 40774078, 40404012, 40474064 and 40674076, and the Visiting Scholar Foundation of State Key Laboratory for Space Weather, Chinese Academy Sciences.
文摘We present a study on the second-order resonant interaction between the ring current protons with Whistler-mode waves propagating near the quasi electrostatic limit following the previous second-order resonant theory. The diffusion coefficients are proportional to the electric field amplitude E, much greater than those for the regular first-order resonance, which are proportional to the electric field amplitudes square E^2. Numerical calculations for the pitch angle scattering are performed for typical energies of protons Ek = 50 keV and 100 keV at locations L = 2 and L = 3.5. The timescale for the loss process of protons by the Whistler waves is found to approach one hour, comparable to that by the EMIC waves, suggesting that Whistler waves may also contribute significantly to the ring current decay under appropriate conditions.
文摘This paper presents an effective method for computing the internal and external viscous flow field around the ducted propulsor behind an axisymmetric they by using a new Navier-Stokes equations solver with primitive variable continuity equation formulation. In the present numerical method, the calculation equation for pressure with well-defined coefficient,which form is similar to the artificial compressibility method, is developed. A semi-staggered grid system is adopted. Not only the advantage of staggered grid system can be retained but the boundary conditions on the inner and outer surface of the duct can be also carried out easily. By using a special grid system and the programming technique for implementing the jump boundary condition on the duct surfaces, the internal and external viscous flow field around the ducted propulsor behind the axisymmetric they may be calculated integrally in an unified numbered grid system. Some configurations are calculated and compared with experimental date and numerical results of other methods. Illustrative calculations are also presented for a stern of axisymmetric body with the backstep fitted a duct to illustrate the capability of the present method. Beside that, the effect of axial distribution of they force is considered and discussed in order to extend the application range of the present method.
文摘An innovative idea of extracting kinetic energy from man-made wind resources using ducted turbine system for on-site power generation is introduced in this paper. A horizontal axis ducted turbine is attached to the top of the chimney to harness the kinetic energy of flue gases for producing electricity. The turbine system is positioned beyond the chimney outlet, to avoid any negative impact on the chimney performance. The convergentdivergent duct causes increase in the flue gas velocity and hence enhances the performance of the turbine. It also acts as a safety cover to the energy recovery system. The results from the CFD based simulation analysis indicate that sig- nificant power 34 kW can be harnessed from the chimney exhaust. The effect of airfoils NACA4412 and NACA4416 and the diffuser angle on the power extraction by the energy recovery system using a 6-bladed ducted turbine has been studied with the CFD simulation. It is observed that the average flue gas velocity in the duct section at the throat is approximately twice that of the inlet velocity, whereas maximum velocity achieved is 2.6 times the inlet velocity. The simulated results show that about power may be extracted from the chimney flue gases of 660 MW power plant. The system can be retrofitted to existing chimneys of thermal power plants, refineries and other industries.
基金National Natural Science Foundation of China(No.51706183,No.51790512)。
文摘Inlet distortion is one of the main factors for the degradation of aerodynamic performance and stability margin of the compressor in practical operation. Due to the change of the inlet shape and the large amount of inhalation of the body Boundary Layer, the ducted thrust fan of the Boundary Layer Ingestion (BLI) propulsion system inevitably works in the intake distortion condition. In this paper, the ducted thrust fan in a BLI propulsion system is taken as the research object. The influence of radial and circumferential total pressure distortion on the inlet section of the ducted thrust fan caused by boundary layer suction and inlet shape is studied by steady single channel and fullloop numerical simulation. The influence law of distortion intensity and distortion range of the two types of distortion patterns of the distortion map is analyzed emphatically. The results show that :(1) the greater the range and intensity of the radial total pressure distortion are, the more affected the performance of the ducted thrust fan is;(2) The aero-dynamic performance decline amplitude of the ducted thrust fan increases with the increase of the intensity of the circumferential total pressure distortion;The transmission law of the circumferential total pressure distortion intensity along the inlet and outlet of the fan is almost the same. Different working conditions have influence on the attenuation degree of the circumferential total pressure distortion in the ducted thrust fan, and the attenuation range of the circumferential total pressure distortion in the design working condition is the largest.
基金Project(2013AA063903)supported by High-tech Research and Development Program of China
文摘To improve the operational efficiency of global optimization in engineering, Kriging model was established to simplify the mathematical model for calculations. Ducted coaxial-rotors aircraft was taken as an example and Fluent software was applied to the virtual prototype simulations. Through simulation sample points, the total lift of the ducted coaxial-rotors aircraft was obtained. The Kriging model was then constructed, and the function was fitted. Improved particle swarm optimization(PSO) was also utilized for the global optimization of the Kriging model of the ducted coaxial-rotors aircraft for the determination of optimized global coordinates. Finally, the optimized results were simulated by Fluent. The results show that the Kriging model and the improved PSO algorithm significantly improve the lift performance of ducted coaxial-rotors aircraft and computer operational efficiency.
文摘This paper focuses on the ducted propulsion with the accelerating nozzle,and discusses the influence of its fluid acceleration quality on its propulsive performances,including the hull efficiency,the relative rotative efficiency,the effective wake,and the thrust deduction factor.An actual ducted propulsion system is used as an example for computational analysis.The computational conditions are divided into four combinations,which are provided with different propeller pitches,cambers,and duct lengths.Themethod applied in this study is the Computational Fluid Dynamics(CFD)technology,and the contents of the calculation include the hull’s viscous resistance,the wave-making resistance,the propeller performance curve,and the self-propulsion simulation in order to obtain the ship’s effective wake,thrust deduction factor,hull efficiency,and relative rotative efficiency.The performance curve of the propeller and resistance estimation results are compared with the experimental values for determining the correctness of the self-propulsion simulation.According to the computational analysis,it is known that increasing the propeller pitch cannot effectively increase the hull efficiency.The duct acceleration quality can be reduced by shortening the duct length;hence,when the effective wake fraction and thrust deduction factor decrease,the hull efficiency is increased.In addition,the pressure inside the duct is relatively low if the acceleration quality of the duct is too high,which is unfavorable for controlling the propeller cavitation.Moreover,if the hull bottom in front of the propeller is tapered up from the front to the back at an overly steep angle,the thrust deduction factor will be too large and lead to a relatively low hull efficiency.
文摘The effectiveness of the Vectored Thrust Ducted Propeller(VTDP)system is not high currently,especially the lateral force is not large enough.Thus,a conceptual design for a deflection device of a VTDP system was proposed to achieve effective hovering control.The magnitude of the lateral force that was applied to maintain balance while hovering was examined.A comparison between the experimental and numerical results for the 16H-1 was made to verify the numerical simulation approach.The deflection devices of the X-49 and the proposed design were analyzed using numerical simulations.The results indicated that a larger lateral force and lower power consumption were presented in the proposed design.The results of this article provide a new idea for the design of the VTDP system.