In order to enhance the contrast of low-light images and reduce noise in them, we propose an image enhancement method based on Retinex theory and dual-tree complex wavelet transform(DT-CWT). The method first converts ...In order to enhance the contrast of low-light images and reduce noise in them, we propose an image enhancement method based on Retinex theory and dual-tree complex wavelet transform(DT-CWT). The method first converts an image from the RGB color space to the HSV color space and decomposes the V-channel by dual-tree complex wavelet transform. Next, an improved local adaptive tone mapping method is applied to process the low frequency components of the image, and a soft threshold denoising algorithm is used to denoise the high frequency components of the image. Then, the V-channel is rebuilt and the contrast is adjusted using white balance method. Finally, the processed image is converted back into the RGB color space as the enhanced result. Experimental results show that the proposed method can effectively improve the performance in terms of contrast enhancement, noise reduction and color reproduction.展开更多
The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring ...The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring technology. Remotely operated vehicles(ROVs) and autonomous underwater vehicles(AUVs) are equipped with high-resolution imaging sonar systems that have broad application potential in underwater gas and target detection tasks. However, some bubble clusters are relatively weak scatterers, so detecting and distinguishing them against the seabed reverberation in forward-looking sonar images are challenging. This study uses the dual-tree complex wavelet transform to extract the image features of multibeam forward-looking sonar. Underwater gas leakages with different flows are classified by combining deep learning theory. A pool experiment is designed to simulate gas leakage, where sonar images are obtained for further processing. Results demonstrate that this method can detect and classify underwater gas leakage streams with high classification accuracy. This performance indicates that the method can detect gas leakage from multibeam forward-looking sonar images and has the potential to predict gas leakage flow.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.61602257 and 61501260)the Natural Science Foundation of Jiangsu Province(No.BK20160904)+2 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX17_0776)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(No.16KJB520035)the NUPTSF(Nos.NY214039 and NY215033)
文摘In order to enhance the contrast of low-light images and reduce noise in them, we propose an image enhancement method based on Retinex theory and dual-tree complex wavelet transform(DT-CWT). The method first converts an image from the RGB color space to the HSV color space and decomposes the V-channel by dual-tree complex wavelet transform. Next, an improved local adaptive tone mapping method is applied to process the low frequency components of the image, and a soft threshold denoising algorithm is used to denoise the high frequency components of the image. Then, the V-channel is rebuilt and the contrast is adjusted using white balance method. Finally, the processed image is converted back into the RGB color space as the enhanced result. Experimental results show that the proposed method can effectively improve the performance in terms of contrast enhancement, noise reduction and color reproduction.
文摘The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring technology. Remotely operated vehicles(ROVs) and autonomous underwater vehicles(AUVs) are equipped with high-resolution imaging sonar systems that have broad application potential in underwater gas and target detection tasks. However, some bubble clusters are relatively weak scatterers, so detecting and distinguishing them against the seabed reverberation in forward-looking sonar images are challenging. This study uses the dual-tree complex wavelet transform to extract the image features of multibeam forward-looking sonar. Underwater gas leakages with different flows are classified by combining deep learning theory. A pool experiment is designed to simulate gas leakage, where sonar images are obtained for further processing. Results demonstrate that this method can detect and classify underwater gas leakage streams with high classification accuracy. This performance indicates that the method can detect gas leakage from multibeam forward-looking sonar images and has the potential to predict gas leakage flow.