A novel particle/metal-based monolithic catalysts dual-bed reactor with beds-interspace supplementary oxygen is constructed comprising of the upper-layer 5 wt%Na2WO4-2 wt%Mn/SiO2 particle catalyst and the under-layer ...A novel particle/metal-based monolithic catalysts dual-bed reactor with beds-interspace supplementary oxygen is constructed comprising of the upper-layer 5 wt%Na2WO4-2 wt%Mn/SiO2 particle catalyst and the under-layer 3 wt%Ce-5 wt%Na2WO4-2 wt%Mn/SBA-15/Al2O3/FeCrA1 metal-based monolithic catalyst as well as a side tube in the interspaces of two layers for supplementing 02. The reaction performance of oxidative coupling of methane (OCM) in the dual-bed reactor system is evaluated. The effects of the reaction parameters such as feed CH4/O2 ratio, reaction temperature and side tube feed 02 flowrate on the catalytic performance are investigated. The results indicate that the suggested mode of dual-bed reactor exhibits an excellent performance for OCM. CH4 conversion of 33.2%, C2H4 selectivity of 46.5% and C2 yield of 22.5% could be obtained, which have been increased by 6.4%, 4.1% and 5.5%, respectively, as compared with 5 wt%Na2WO4-2 wt%Mn/SiO2 particle catalyst in a single-bed reactor and increased by 10.7%, 31.9% and 17.7%, respectively, as compared with 3 wt%Ce-5 wt%Na2WO4-2 wt%Mn/SBA-15/Al2O3/FeCrA1 metal-based monolithic catalyst in a single-bed reactor. The effective promotion of OCM performance in the reactor would supply a valuable reference for the industrialization of OCM process.展开更多
A dual-bed reactor was constructed comprising of a 5%Na2WO4-2%Mn/SiO2 particle catalyst and a 4%Ce-5%Na2WO4-2%Mn/SiO2 /cordierite monolithic catalyst.The reaction performance of the oxidative coupling of methane (OCM...A dual-bed reactor was constructed comprising of a 5%Na2WO4-2%Mn/SiO2 particle catalyst and a 4%Ce-5%Na2WO4-2%Mn/SiO2 /cordierite monolithic catalyst.The reaction performance of the oxidative coupling of methane (OCM) over the dual-bed reactor system was evaluated.The effects of the bed height and operation mode,as well as the reaction parameters such as reaction temperature,CH4/O2 ratio and flowrate of feed gas,on the catalytic performance were investigated.The results indicated that the suggested dual-bed reactor exhibited a good performance for the OCM reaction when the feed gases firstly passed through the particle catalyst bed and then to the monolithic catalyst bed.A CH4 conversion of 38.2% and a C2H4 selectivity of 43.3% could be obtained using the dual-bed reactor with a particle catalyst bed height of 10 mm and a monolithic catalyst bed height of 50 mm.Both the CH4 conversion and C2H4 selectivity have increased by 2.5% and 12.8%,respectively,as compared with the 5%Na2WO4-2%Mn/SiO2 particle catalyst in a conventional single-bed reactor and by 12.9% and 23.0%,respectively,as compared with the 4%Ce-5%Na2WO4-2%Mn/SiO2 /cordierite monolithic catalyst in a single-bed reactor.The catalytic performance of the OCM in the dual-bed reactor system has been improved remarkably.展开更多
A dual-bed catalytic system is proposed for the direct conversion of methane to liquid hydrocarbons. In this system, methane is converted in the first stage to oxidative coupling of methane (OCM) products by selecti...A dual-bed catalytic system is proposed for the direct conversion of methane to liquid hydrocarbons. In this system, methane is converted in the first stage to oxidative coupling of methane (OCM) products by selective catalytic oxidation with oxygen over La-supported MgO catalyst. The second bed, comprising of the HZSM-5 zeolite catalyst, is used for the oligomerization of OCM light hydrocarbon products to liquid hydrocarbons. The effects of temperature (650-800 ℃), methane to oxygen ratio (4-10), and SIO2/Al2O3 ratio of the HZSM-5 zeolite catalyst on the process are studied. At higher reaction temperatures, there is considerable dealumination of HZSM-5, and thus its catalytic performance is reduced. The acidity of HZSM-5 in the second bed is responsible for the oligomerization reaction that leads to the formation of liquid hydrocarbons. The activities of the oligomerization sites were unequivocally affected by the SiO2/Al2O3 ratio. The relation between the acidity and the activity of HZSM-5 is studied by means of TPD-NH3 techniques. The rise in oxygen concentration is not beneficial for the C5+ selectivity, where the combustion reaction of intermediate hydrocarbon products that leads to the formation of carbon oxide (CO+CO2) products is more dominant than the oligomerization reaction. The dual-bed catalytic system is highly potential for directly converting methane to liquid fuels.展开更多
Light olefins (C2–C4olefins) are the most important basic carbon-based building blocks, which are mainly produced from the catalytic cracking of naphtha [1–3]. With the rapid depletion of oil reserves and the growin...Light olefins (C2–C4olefins) are the most important basic carbon-based building blocks, which are mainly produced from the catalytic cracking of naphtha [1–3]. With the rapid depletion of oil reserves and the growing demand for lower olefins, there is an urgent need to develop an alternative technique for producing them from non-petroleum resources such as coal, natural gas, or biomass. Currently, coal has been successfully transformed to olefins in China via the combination of the processes of coal-tosyngas, syngas-to-methanol and methanol-to-olefins [4–6]. In order to further improve efficiency and reduce investment, the direct conversion of syngas to olefins has received extensive attention in recent years [7].展开更多
Ethylene and propylene(C_(2)^(–)3=)are the two most demanded olefin products,which are mainly produced by thermal and catalytic cracking of petroleum-derived hydrocarbons now[1].With the depletion of petroleum resour...Ethylene and propylene(C_(2)^(–)3=)are the two most demanded olefin products,which are mainly produced by thermal and catalytic cracking of petroleum-derived hydrocarbons now[1].With the depletion of petroleum resources,the use of non-petroleum resources such as natural gas,coal,biomass,even CO_(2)etc.展开更多
Various process residues represent a kind of biomass resource already concentrated but containing water as much as 60 wt.%. These materials are generally treated as waste or simply combusted directly to generate heat....Various process residues represent a kind of biomass resource already concentrated but containing water as much as 60 wt.%. These materials are generally treated as waste or simply combusted directly to generate heat. Recently, we attempted to convert them into middle caloric gas to substitute for natural gas, as a chemical or a high-rank gaseous fuel for advanced combustion utilities. Such conversion is implemented through dual fluidized bed gasification (DFBG). Concerning the high water content of the fuels, DFBG was suggested to accomplish either with high-efficiency fuel drying in advance or direct decoupling of fuel drying/pyrolysis from char gasification and tar/hydrocarbon reforming. Along with fuel drying, calcium-based catalyst can be impregnated into the fuel, without much additional cost, to increase the fuel's gasification reactivity and to reduce tar formation. This article reports the Ca impregnation method and its resulting effects on gasification reactivity and tar suppression ability. Meanwhile, the principle of directly gasifying wet fuel with decoupled dual fluidized bed gasification (D-DFBG) is also highlighted.展开更多
A cold flow model of an 8 MW dual fluidized bed (DFB) system is simulated using the commercial compu- tational particle fluid dynamics (CPFD) software package Barracuda. The DFB system comprises a bubbling bed con...A cold flow model of an 8 MW dual fluidized bed (DFB) system is simulated using the commercial compu- tational particle fluid dynamics (CPFD) software package Barracuda. The DFB system comprises a bubbling bed connected to a fast fluidized bed with the bed material circulating between them. As the hydrodynam- ics in hot DFB plants are complex because of high temperatures and many chemical reaction processes, cold flow models are used. Performing numerical simulations of cold flows enables a focus on the hydro- dynamics as the chemistry and heat and mass transfer processes can be put aside. The drag law has a major influence on the hydrodynamics, and therefore its influence on pressure, particle distribution, and bed material recirculation rate is calculated using Barracuda and its results are compared with experimental results. The drag laws used were energy-minimization multiscale (EMMS), Ganser, Turton-Levenspiel, and a combination of Wen-Yu]Ergun. Eleven operating points were chosen for that study and each was calculated with the aforementioned drag laws. The EMMS drag law best predicted the pressure and dis- tribution of the bed material in the different parts of the DFB system. For predicting the bed material recirculation rate, the Ganser drag law showed the best results. However, the drag laws often were not able to predict the experimentally found trends of the bed material recirculation rate. Indeed, the drag law significantly influences the hydrodynamic outcomes in a DFB system and must be chosen carefully to obtain meaningful simulation results. More research may enable recommendations as to which drag law is useful in simulations ofa DFB system with CPFD.展开更多
Dual fluidized bed gasifiers (DFBG) are effective in producing nitrogen-free syngas from biomass. How- ever, to improve the gasifier performance, pressure drops and solid fractions within the DFBG system need to be ...Dual fluidized bed gasifiers (DFBG) are effective in producing nitrogen-free syngas from biomass. How- ever, to improve the gasifier performance, pressure drops and solid fractions within the DFBG system need to be controlled. In this study, the effects of varying the fluidizing velocity in the fast fluidized bed (FFB) on the pressure drops and the solid fractions in the system were investigated in a 100 kW DFBG and in a dual fluidized bed cold model (DFCM). Based on the experimental results, empirical correlations were developed to predict the height-averaged solid fraction in the bottom section of the FFB. Accuracy and advantages of the correlations were analyzed. The correlation is useful for design and modeling of the DFBG systems where the height-averaged solid fraction is required to be determined.展开更多
基金supported by the National Basic Research Program of China (Project No. 2005CB221405)
文摘A novel particle/metal-based monolithic catalysts dual-bed reactor with beds-interspace supplementary oxygen is constructed comprising of the upper-layer 5 wt%Na2WO4-2 wt%Mn/SiO2 particle catalyst and the under-layer 3 wt%Ce-5 wt%Na2WO4-2 wt%Mn/SBA-15/Al2O3/FeCrA1 metal-based monolithic catalyst as well as a side tube in the interspaces of two layers for supplementing 02. The reaction performance of oxidative coupling of methane (OCM) in the dual-bed reactor system is evaluated. The effects of the reaction parameters such as feed CH4/O2 ratio, reaction temperature and side tube feed 02 flowrate on the catalytic performance are investigated. The results indicate that the suggested mode of dual-bed reactor exhibits an excellent performance for OCM. CH4 conversion of 33.2%, C2H4 selectivity of 46.5% and C2 yield of 22.5% could be obtained, which have been increased by 6.4%, 4.1% and 5.5%, respectively, as compared with 5 wt%Na2WO4-2 wt%Mn/SiO2 particle catalyst in a single-bed reactor and increased by 10.7%, 31.9% and 17.7%, respectively, as compared with 3 wt%Ce-5 wt%Na2WO4-2 wt%Mn/SBA-15/Al2O3/FeCrA1 metal-based monolithic catalyst in a single-bed reactor. The effective promotion of OCM performance in the reactor would supply a valuable reference for the industrialization of OCM process.
基金supported by the National Basic Research Program of China(Project No. 2005CB221405)
文摘A dual-bed reactor was constructed comprising of a 5%Na2WO4-2%Mn/SiO2 particle catalyst and a 4%Ce-5%Na2WO4-2%Mn/SiO2 /cordierite monolithic catalyst.The reaction performance of the oxidative coupling of methane (OCM) over the dual-bed reactor system was evaluated.The effects of the bed height and operation mode,as well as the reaction parameters such as reaction temperature,CH4/O2 ratio and flowrate of feed gas,on the catalytic performance were investigated.The results indicated that the suggested dual-bed reactor exhibited a good performance for the OCM reaction when the feed gases firstly passed through the particle catalyst bed and then to the monolithic catalyst bed.A CH4 conversion of 38.2% and a C2H4 selectivity of 43.3% could be obtained using the dual-bed reactor with a particle catalyst bed height of 10 mm and a monolithic catalyst bed height of 50 mm.Both the CH4 conversion and C2H4 selectivity have increased by 2.5% and 12.8%,respectively,as compared with the 5%Na2WO4-2%Mn/SiO2 particle catalyst in a conventional single-bed reactor and by 12.9% and 23.0%,respectively,as compared with the 4%Ce-5%Na2WO4-2%Mn/SiO2 /cordierite monolithic catalyst in a single-bed reactor.The catalytic performance of the OCM in the dual-bed reactor system has been improved remarkably.
文摘A dual-bed catalytic system is proposed for the direct conversion of methane to liquid hydrocarbons. In this system, methane is converted in the first stage to oxidative coupling of methane (OCM) products by selective catalytic oxidation with oxygen over La-supported MgO catalyst. The second bed, comprising of the HZSM-5 zeolite catalyst, is used for the oligomerization of OCM light hydrocarbon products to liquid hydrocarbons. The effects of temperature (650-800 ℃), methane to oxygen ratio (4-10), and SIO2/Al2O3 ratio of the HZSM-5 zeolite catalyst on the process are studied. At higher reaction temperatures, there is considerable dealumination of HZSM-5, and thus its catalytic performance is reduced. The acidity of HZSM-5 in the second bed is responsible for the oligomerization reaction that leads to the formation of liquid hydrocarbons. The activities of the oligomerization sites were unequivocally affected by the SiO2/Al2O3 ratio. The relation between the acidity and the activity of HZSM-5 is studied by means of TPD-NH3 techniques. The rise in oxygen concentration is not beneficial for the C5+ selectivity, where the combustion reaction of intermediate hydrocarbon products that leads to the formation of carbon oxide (CO+CO2) products is more dominant than the oligomerization reaction. The dual-bed catalytic system is highly potential for directly converting methane to liquid fuels.
基金the financial support from the National Natural Science Foundation of China(Grant Nos.21978285,21991093,21991090)the “Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA21030100)。
文摘Light olefins (C2–C4olefins) are the most important basic carbon-based building blocks, which are mainly produced from the catalytic cracking of naphtha [1–3]. With the rapid depletion of oil reserves and the growing demand for lower olefins, there is an urgent need to develop an alternative technique for producing them from non-petroleum resources such as coal, natural gas, or biomass. Currently, coal has been successfully transformed to olefins in China via the combination of the processes of coal-tosyngas, syngas-to-methanol and methanol-to-olefins [4–6]. In order to further improve efficiency and reduce investment, the direct conversion of syngas to olefins has received extensive attention in recent years [7].
基金the financial support from the National Natural Science Foundation of China(Grant Nos.21978285,21991093,21991090)the"Transformational Technologies for Clean Energy and Demonstration",Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA21030100)。
文摘Ethylene and propylene(C_(2)^(–)3=)are the two most demanded olefin products,which are mainly produced by thermal and catalytic cracking of petroleum-derived hydrocarbons now[1].With the depletion of petroleum resources,the use of non-petroleum resources such as natural gas,coal,biomass,even CO_(2)etc.
基金The Natural Science Foundation of China(NSFC) financed the first period of research on the decoupled dual fluidized bed gasification(20606034,20776144)
文摘Various process residues represent a kind of biomass resource already concentrated but containing water as much as 60 wt.%. These materials are generally treated as waste or simply combusted directly to generate heat. Recently, we attempted to convert them into middle caloric gas to substitute for natural gas, as a chemical or a high-rank gaseous fuel for advanced combustion utilities. Such conversion is implemented through dual fluidized bed gasification (DFBG). Concerning the high water content of the fuels, DFBG was suggested to accomplish either with high-efficiency fuel drying in advance or direct decoupling of fuel drying/pyrolysis from char gasification and tar/hydrocarbon reforming. Along with fuel drying, calcium-based catalyst can be impregnated into the fuel, without much additional cost, to increase the fuel's gasification reactivity and to reduce tar formation. This article reports the Ca impregnation method and its resulting effects on gasification reactivity and tar suppression ability. Meanwhile, the principle of directly gasifying wet fuel with decoupled dual fluidized bed gasification (D-DFBG) is also highlighted.
文摘A cold flow model of an 8 MW dual fluidized bed (DFB) system is simulated using the commercial compu- tational particle fluid dynamics (CPFD) software package Barracuda. The DFB system comprises a bubbling bed connected to a fast fluidized bed with the bed material circulating between them. As the hydrodynam- ics in hot DFB plants are complex because of high temperatures and many chemical reaction processes, cold flow models are used. Performing numerical simulations of cold flows enables a focus on the hydro- dynamics as the chemistry and heat and mass transfer processes can be put aside. The drag law has a major influence on the hydrodynamics, and therefore its influence on pressure, particle distribution, and bed material recirculation rate is calculated using Barracuda and its results are compared with experimental results. The drag laws used were energy-minimization multiscale (EMMS), Ganser, Turton-Levenspiel, and a combination of Wen-Yu]Ergun. Eleven operating points were chosen for that study and each was calculated with the aforementioned drag laws. The EMMS drag law best predicted the pressure and dis- tribution of the bed material in the different parts of the DFB system. For predicting the bed material recirculation rate, the Ganser drag law showed the best results. However, the drag laws often were not able to predict the experimentally found trends of the bed material recirculation rate. Indeed, the drag law significantly influences the hydrodynamic outcomes in a DFB system and must be chosen carefully to obtain meaningful simulation results. More research may enable recommendations as to which drag law is useful in simulations ofa DFB system with CPFD.
基金funded by the Ministry of Business,Innovation and Employment,New Zealand
文摘Dual fluidized bed gasifiers (DFBG) are effective in producing nitrogen-free syngas from biomass. How- ever, to improve the gasifier performance, pressure drops and solid fractions within the DFBG system need to be controlled. In this study, the effects of varying the fluidizing velocity in the fast fluidized bed (FFB) on the pressure drops and the solid fractions in the system were investigated in a 100 kW DFBG and in a dual fluidized bed cold model (DFCM). Based on the experimental results, empirical correlations were developed to predict the height-averaged solid fraction in the bottom section of the FFB. Accuracy and advantages of the correlations were analyzed. The correlation is useful for design and modeling of the DFBG systems where the height-averaged solid fraction is required to be determined.