The dry sliding wear behavior of Ti_2AlC reinforced AZ91 magnesium composites was investigated at sliding velocity of 0.5 m/s under loads of 10, 20, 40 and 80 N using pin-on-disk configuration against a Cr15 steel dis...The dry sliding wear behavior of Ti_2AlC reinforced AZ91 magnesium composites was investigated at sliding velocity of 0.5 m/s under loads of 10, 20, 40 and 80 N using pin-on-disk configuration against a Cr15 steel disc. Wear rates and friction coefficients were registered during wear tests. Worn tracks and wear debris were examined by scanning electron microscopy, energy dispersive X-ray spectrometry and transmission electron microscopy in order to obtain the wear mechanisms of the studied materials. The main mechanisms were characterized as the magnesium matrix oxidation and self-lubrication of Ti_2AlC MAX phase. In all conditions, the composites exhibit superior wear resistance and self-lubricated ability than the AZ91 Mg alloy. In addition, the anisotropic mechanisms in tribological properties of textured Ti_2AlC-Mg composites were confirmed and discussed.展开更多
Al-7075 alloy-base matrix, reinforced with mixtures of silicon carbide (SiC) and boron carbide (B4C) particles, know as hybrid composites have been fabricated by stir casting technique (liquid metallurgy route) and op...Al-7075 alloy-base matrix, reinforced with mixtures of silicon carbide (SiC) and boron carbide (B4C) particles, know as hybrid composites have been fabricated by stir casting technique (liquid metallurgy route) and optimized at different parameters like sliding speed, applied load, sliding time, and percentage of reinforcement by Taguchi method. The specimens were examined by Rockwell hardness test machine, Pin on Disc, Scanning Electron Microscope (SEM) and Optical Microscope. A plan of experiment generated through Taguchi’s technique is used to conduct experiments based on L27 orthogonal array. The developed ANOVA and the regression equations were used to find the optimum wear as well as co-efficient of friction under the influence of sliding speed, applied load, sliding time and percentage of reinforcement. The dry sliding wear resistance was analyzed on the basis of “smaller the best”. Finally, confirmation tests were carried out to verify the experimental results.展开更多
During the past two decades, considerable efforts have been made in the development of high performance spring steels to meet the needs for weight and savings in the automotive industry. During the service the suspens...During the past two decades, considerable efforts have been made in the development of high performance spring steels to meet the needs for weight and savings in the automotive industry. During the service the suspension system will be subjected to different environmental conditions, at the same time it has to sustain a variety of loads acting on it. Among all the wear of spring steel plays a vital role. In this experimental analysis an attempt has been made to investigate the performance of spring steel (EN-47 / SUP 10) under the dry sliding condition. The specimen preparation and the experimentations have been carried out according to the ASTM G99 standards. The effects of tempering and cryogenic treatments on the performance of the spring steel have also been determined. The results have revealed that the material condition has got a significant influence on the performance of the spring steel. In order to analyze the percentage contribution of different wear parameter and the material condition, the DOE and ANOVA have been made. The results have shown that the load (49.205%) has shown the highest influence and the material condition has shown 22.56% of contribution on wear behavior.展开更多
Friction and sliding wear behaviour of Ti-B-N coatings against AISI440C steel ba ll and WC-6wt%Co ball were studied by using pin-on-disk tribometer along with mi crostructure characterization using optical microscopy ...Friction and sliding wear behaviour of Ti-B-N coatings against AISI440C steel ba ll and WC-6wt%Co ball were studied by using pin-on-disk tribometer along with mi crostructure characterization using optical microscopy (OM), scanning electron m icroscopy (SEM) and X-ray photoelectron spectroscopy (XPS). It is shown that the wear resistance of film depended on the wear mechanism. In the case of AISI440C steel, adhesive wear were pre-dominant and the wear rate increased sharply to a maximum when N content reach ~38at.%. This might be related to the change of fi lm microstructure and phase configuration, so the least adhesive transfer of tri bo-film was observed. If WC-6wt%Co ball was used, less deformation wear debris w as observed, this was responsible for the rise of wear rate. Despite of differen t wear modes, friction coefficients in both cases were found to depend mainly on the formation and the amount of h-BN phase. Elemental analysis by energy disper sive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) revealed that oxygen participated in the wear behavior by reacting with films to form the deb ris comprised of various types of Ti oxide including TiO, TiO2 and Ti2O3 , which increased wear resistance.展开更多
基金supported by the National Natural Science Foundation of China (No. 51701010)the Beijing Jiaotong University Foundation for youth scientists (No. No.2017RC013)+1 种基金the Project National United Engineering Laboratory for Advanced Bearing Tribology-Henan University of Science and Technology (No. 201805)the Beijing Government Funds for the Constructive Project of Central Universities (No. 353139535)
文摘The dry sliding wear behavior of Ti_2AlC reinforced AZ91 magnesium composites was investigated at sliding velocity of 0.5 m/s under loads of 10, 20, 40 and 80 N using pin-on-disk configuration against a Cr15 steel disc. Wear rates and friction coefficients were registered during wear tests. Worn tracks and wear debris were examined by scanning electron microscopy, energy dispersive X-ray spectrometry and transmission electron microscopy in order to obtain the wear mechanisms of the studied materials. The main mechanisms were characterized as the magnesium matrix oxidation and self-lubrication of Ti_2AlC MAX phase. In all conditions, the composites exhibit superior wear resistance and self-lubricated ability than the AZ91 Mg alloy. In addition, the anisotropic mechanisms in tribological properties of textured Ti_2AlC-Mg composites were confirmed and discussed.
文摘Al-7075 alloy-base matrix, reinforced with mixtures of silicon carbide (SiC) and boron carbide (B4C) particles, know as hybrid composites have been fabricated by stir casting technique (liquid metallurgy route) and optimized at different parameters like sliding speed, applied load, sliding time, and percentage of reinforcement by Taguchi method. The specimens were examined by Rockwell hardness test machine, Pin on Disc, Scanning Electron Microscope (SEM) and Optical Microscope. A plan of experiment generated through Taguchi’s technique is used to conduct experiments based on L27 orthogonal array. The developed ANOVA and the regression equations were used to find the optimum wear as well as co-efficient of friction under the influence of sliding speed, applied load, sliding time and percentage of reinforcement. The dry sliding wear resistance was analyzed on the basis of “smaller the best”. Finally, confirmation tests were carried out to verify the experimental results.
文摘During the past two decades, considerable efforts have been made in the development of high performance spring steels to meet the needs for weight and savings in the automotive industry. During the service the suspension system will be subjected to different environmental conditions, at the same time it has to sustain a variety of loads acting on it. Among all the wear of spring steel plays a vital role. In this experimental analysis an attempt has been made to investigate the performance of spring steel (EN-47 / SUP 10) under the dry sliding condition. The specimen preparation and the experimentations have been carried out according to the ASTM G99 standards. The effects of tempering and cryogenic treatments on the performance of the spring steel have also been determined. The results have revealed that the material condition has got a significant influence on the performance of the spring steel. In order to analyze the percentage contribution of different wear parameter and the material condition, the DOE and ANOVA have been made. The results have shown that the load (49.205%) has shown the highest influence and the material condition has shown 22.56% of contribution on wear behavior.
文摘Friction and sliding wear behaviour of Ti-B-N coatings against AISI440C steel ba ll and WC-6wt%Co ball were studied by using pin-on-disk tribometer along with mi crostructure characterization using optical microscopy (OM), scanning electron m icroscopy (SEM) and X-ray photoelectron spectroscopy (XPS). It is shown that the wear resistance of film depended on the wear mechanism. In the case of AISI440C steel, adhesive wear were pre-dominant and the wear rate increased sharply to a maximum when N content reach ~38at.%. This might be related to the change of fi lm microstructure and phase configuration, so the least adhesive transfer of tri bo-film was observed. If WC-6wt%Co ball was used, less deformation wear debris w as observed, this was responsible for the rise of wear rate. Despite of differen t wear modes, friction coefficients in both cases were found to depend mainly on the formation and the amount of h-BN phase. Elemental analysis by energy disper sive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) revealed that oxygen participated in the wear behavior by reacting with films to form the deb ris comprised of various types of Ti oxide including TiO, TiO2 and Ti2O3 , which increased wear resistance.