Drug resistance renders standard chemotherapy ineffective in the treatment of connective tissue growth factor (CTGF)-overexpressing breast cancer. By co-embedding the breast tumor cell-penetrating peptide (PEGA-pVE...Drug resistance renders standard chemotherapy ineffective in the treatment of connective tissue growth factor (CTGF)-overexpressing breast cancer. By co-embedding the breast tumor cell-penetrating peptide (PEGA-pVEC) and hyaluronic acid (HA) as a targeting media, novel cascaded targeting nanoparficles (HACT NPs) were created on a rattle mesoporous silica (rmSiO2) scaffold for the pinpoint delivery of siRNAs along with an anticancer drug, aiming at overcoming the drug resistance of CTGF-overexpressing breast cancer in vivo. The targeting nanoparticles selectively accumulated in the vasculature under the guidance of the PEGA-pVEC peptide, cascaded by receptor-mediated endocytosis with the aid of another targeting agent, HA, presenting a greater in vivo tumor targeting ability than single targeting ligand vectors. In addition, an HA shell prevented the leakage of therapeutic drugs during the cargo transport process, until the hyaluronidase (HAase)-triggered degradation upon lysosomes entering, guaranteeing a controllable drug release inside the target cells. When the protective shell disintegrates, the released siRNA took charge to silence the gene associated with drug resistance, CTGF, thus facilitating doxorubicin-induced apoptosis. The cascaded targeting media (PEGA-pVEC and HA) advances precision-guided therapy in vivo, while the encapsulation of siRNAs into a chemotherapy drug delivery system provides an efficient strategy for the treatment of drug resistance cancers.展开更多
Background: Photodynamic therapy (PDT) is a less invasive cancer treatment using photochemical reactions induced by light irradiation to a photosensitizer (PS). Highly selective PDT with fast accumulation of the PS in...Background: Photodynamic therapy (PDT) is a less invasive cancer treatment using photochemical reactions induced by light irradiation to a photosensitizer (PS). Highly selective PDT with fast accumulation of the PS in target site might be a promising treatment option for drug-resistant prostate cancer facing high incidence rate of elderly men who have no effective treatment options and require a minimally invasive treatment. Hemagglutinating virus of Japan envelope (HVJ-E) allows selective and fast drug delivery to the drug-resistant prostate cancer cells via rapid cell membrane fusion. PS named porphyrus envelope (PE) has been developed by insertion of lipidated protoporphyrin IX (PpIX lipid) into HVJ-E. In this study, we investigated the optimal conditions for PE preparation and laser irradiation for highly selective PDT using PE with a short drug-light interval. Materials and Methods: Human hormon refractory prostate cancer cell line PC-3 and human normal prostate epithelial cell line PNT2 were cultured. PpIX lipid uptake and cytotoxicity of PDT in the cells incubated with PE for 10 min were evaluated by measuring fluorescence intensity and by using a cell counting reagent 24 h after PDT, respectively. Results: PpIX lipid uptake and cytotoxicity of PDT were increased with PpIX lipid concentration. Cytotoxicity of PDT using PE was more than 9 times as strong as that with PpIX lipid and PpIX induced by 5-aminolevulinic acid. Much stronger cytotoxicity was induced in PC-3 cells than PNT2 cells with the ratio of cell death rate for cancer to normal cells up to 4.64 ± 0.09. Conclusions: Fast PS delivery with HVJ-E allows highly selective PDT with a short drug-light interval. Therefore, PDT using PE has a potential to shorten treatment period and reduce side effects of PDT.展开更多
文摘Drug resistance renders standard chemotherapy ineffective in the treatment of connective tissue growth factor (CTGF)-overexpressing breast cancer. By co-embedding the breast tumor cell-penetrating peptide (PEGA-pVEC) and hyaluronic acid (HA) as a targeting media, novel cascaded targeting nanoparficles (HACT NPs) were created on a rattle mesoporous silica (rmSiO2) scaffold for the pinpoint delivery of siRNAs along with an anticancer drug, aiming at overcoming the drug resistance of CTGF-overexpressing breast cancer in vivo. The targeting nanoparticles selectively accumulated in the vasculature under the guidance of the PEGA-pVEC peptide, cascaded by receptor-mediated endocytosis with the aid of another targeting agent, HA, presenting a greater in vivo tumor targeting ability than single targeting ligand vectors. In addition, an HA shell prevented the leakage of therapeutic drugs during the cargo transport process, until the hyaluronidase (HAase)-triggered degradation upon lysosomes entering, guaranteeing a controllable drug release inside the target cells. When the protective shell disintegrates, the released siRNA took charge to silence the gene associated with drug resistance, CTGF, thus facilitating doxorubicin-induced apoptosis. The cascaded targeting media (PEGA-pVEC and HA) advances precision-guided therapy in vivo, while the encapsulation of siRNAs into a chemotherapy drug delivery system provides an efficient strategy for the treatment of drug resistance cancers.
文摘Background: Photodynamic therapy (PDT) is a less invasive cancer treatment using photochemical reactions induced by light irradiation to a photosensitizer (PS). Highly selective PDT with fast accumulation of the PS in target site might be a promising treatment option for drug-resistant prostate cancer facing high incidence rate of elderly men who have no effective treatment options and require a minimally invasive treatment. Hemagglutinating virus of Japan envelope (HVJ-E) allows selective and fast drug delivery to the drug-resistant prostate cancer cells via rapid cell membrane fusion. PS named porphyrus envelope (PE) has been developed by insertion of lipidated protoporphyrin IX (PpIX lipid) into HVJ-E. In this study, we investigated the optimal conditions for PE preparation and laser irradiation for highly selective PDT using PE with a short drug-light interval. Materials and Methods: Human hormon refractory prostate cancer cell line PC-3 and human normal prostate epithelial cell line PNT2 were cultured. PpIX lipid uptake and cytotoxicity of PDT in the cells incubated with PE for 10 min were evaluated by measuring fluorescence intensity and by using a cell counting reagent 24 h after PDT, respectively. Results: PpIX lipid uptake and cytotoxicity of PDT were increased with PpIX lipid concentration. Cytotoxicity of PDT using PE was more than 9 times as strong as that with PpIX lipid and PpIX induced by 5-aminolevulinic acid. Much stronger cytotoxicity was induced in PC-3 cells than PNT2 cells with the ratio of cell death rate for cancer to normal cells up to 4.64 ± 0.09. Conclusions: Fast PS delivery with HVJ-E allows highly selective PDT with a short drug-light interval. Therefore, PDT using PE has a potential to shorten treatment period and reduce side effects of PDT.