利用液滴外延法在GaAs(001)衬底表面制备InAs量子点,通过控制变量分别研究沉积速率、沉积量对In液滴在GaAs表面生长过程中的影响.使用原子力显微镜(Atomic Force Microscope,AFM)表征I⁃nAs纳米结构形貌,得出结论:(1)沉积速率主要通过影...利用液滴外延法在GaAs(001)衬底表面制备InAs量子点,通过控制变量分别研究沉积速率、沉积量对In液滴在GaAs表面生长过程中的影响.使用原子力显微镜(Atomic Force Microscope,AFM)表征I⁃nAs纳米结构形貌,得出结论:(1)沉积速率主要通过影响In液滴成核率来控制液滴的密度,即随着沉积速率的增大,In原子在衬底表面的成核率增加,InAs量子点密度增加,实验符合生长动力学经典成核理论.(2)沉积量的改变主要影响液滴的熟化过程,即随着沉积量的增大,可参与生长的活跃的In原子增加,促进了液滴熟化,使得扩散坍塌的原子数量增加,导致在InAs纳米结构中出现多量子点现象.展开更多
Extremely low density InAs quantum dots (QDs) are grown by molecular beam droplet epitaxy. The gallium deposition amount is optimized to saturate exactly the excess arsenic atoms present on the GaAs substrate surfac...Extremely low density InAs quantum dots (QDs) are grown by molecular beam droplet epitaxy. The gallium deposition amount is optimized to saturate exactly the excess arsenic atoms present on the GaAs substrate surface during growth, and low density InAs/GaAs QDs (4× 10^6 cm^-2) are formed by depositing 0.65 monolayers (MLs) of indium. This is much less than the critical deposition thickness (1.7 ML), which is necessary to form InAs/GaAs QDs with the conventional Stranski-Krastanov growth mode. The narrow photoluminescence linewidth of about 24 meV is insensitive to cryostat temperatures from IO K to 250K. All measurements indicate that there is no wetting layer connecting the QDs.展开更多
液滴外延技术不仅适用于晶格失配,也适用于晶格匹配材料系统,且易于制备低维半导体结构,如低密度量子点、环等.本文研究了液滴外延法在GaAs表面进行不同Al、Ga组分的量子点生长.在实验中用反射式高能电子衍射仪(Reflection High Energy ...液滴外延技术不仅适用于晶格失配,也适用于晶格匹配材料系统,且易于制备低维半导体结构,如低密度量子点、环等.本文研究了液滴外延法在GaAs表面进行不同Al、Ga组分的量子点生长.在实验中用反射式高能电子衍射仪(Reflection High Energy Electron Diffraction, RHEED)对样品进行原位监控.通过控制Al、Ga液滴的沉积速率来控制液滴同时沉积在衬底上形成的组分.研究发现,随着Al组分的增加,量子点逐渐变得密集,润湿角变低.在Al组分增高超过0.5之后,出现了大小不一的量子点,且量子点密度出现指数型增长.对此进行研究分析,给出了一个经验公式,并就现象进行了解释.展开更多
文摘利用液滴外延法在GaAs(001)衬底表面制备InAs量子点,通过控制变量分别研究沉积速率、沉积量对In液滴在GaAs表面生长过程中的影响.使用原子力显微镜(Atomic Force Microscope,AFM)表征I⁃nAs纳米结构形貌,得出结论:(1)沉积速率主要通过影响In液滴成核率来控制液滴的密度,即随着沉积速率的增大,In原子在衬底表面的成核率增加,InAs量子点密度增加,实验符合生长动力学经典成核理论.(2)沉积量的改变主要影响液滴的熟化过程,即随着沉积量的增大,可参与生长的活跃的In原子增加,促进了液滴熟化,使得扩散坍塌的原子数量增加,导致在InAs纳米结构中出现多量子点现象.
基金Supported by the National Natural Science Foundation of China under Grant No 60625405, the Special Fund for Major State Basic Research Project, and the National High Technology Research and Development Programme of China.
文摘Extremely low density InAs quantum dots (QDs) are grown by molecular beam droplet epitaxy. The gallium deposition amount is optimized to saturate exactly the excess arsenic atoms present on the GaAs substrate surface during growth, and low density InAs/GaAs QDs (4× 10^6 cm^-2) are formed by depositing 0.65 monolayers (MLs) of indium. This is much less than the critical deposition thickness (1.7 ML), which is necessary to form InAs/GaAs QDs with the conventional Stranski-Krastanov growth mode. The narrow photoluminescence linewidth of about 24 meV is insensitive to cryostat temperatures from IO K to 250K. All measurements indicate that there is no wetting layer connecting the QDs.
文摘液滴外延技术不仅适用于晶格失配,也适用于晶格匹配材料系统,且易于制备低维半导体结构,如低密度量子点、环等.本文研究了液滴外延法在GaAs表面进行不同Al、Ga组分的量子点生长.在实验中用反射式高能电子衍射仪(Reflection High Energy Electron Diffraction, RHEED)对样品进行原位监控.通过控制Al、Ga液滴的沉积速率来控制液滴同时沉积在衬底上形成的组分.研究发现,随着Al组分的增加,量子点逐渐变得密集,润湿角变低.在Al组分增高超过0.5之后,出现了大小不一的量子点,且量子点密度出现指数型增长.对此进行研究分析,给出了一个经验公式,并就现象进行了解释.