Ansatz method and the theory of dynamical systems are used to study the traveling wave solutions for the generalized Drinfeld-Sokolov equations. Under two groups of the parametric conditions, more solitary wave soluti...Ansatz method and the theory of dynamical systems are used to study the traveling wave solutions for the generalized Drinfeld-Sokolov equations. Under two groups of the parametric conditions, more solitary wave solutions, kink and anti-kink wave solutions and periodic wave solutions are obtained. Exact explicit parametric representations of these travelling wave solutions are given.展开更多
In this paper, the dispersionless D-type Drinfeld–Sokolov hierarchy, i.e. a reduction of the dispersionless two-component BKP hierarchy, is studied. The additional symmetry flows of this hierarchy are presented. Thes...In this paper, the dispersionless D-type Drinfeld–Sokolov hierarchy, i.e. a reduction of the dispersionless two-component BKP hierarchy, is studied. The additional symmetry flows of this hierarchy are presented. These flows form an infinite-dimensional Lie algebra of Block type as well as a Lie algebra of Hamiltonian type.展开更多
In this paper we report some explicit evolutionary PDEs of the Drinfeld-Sokolov hierarchy of type E_(6)^((1)),and show how the unknown functions in these PDEs are related to the tau function.Moreover,for this hierarch...In this paper we report some explicit evolutionary PDEs of the Drinfeld-Sokolov hierarchy of type E_(6)^((1)),and show how the unknown functions in these PDEs are related to the tau function.Moreover,for this hierarchy we compute its topological solution of formal series up to a certain degree,whose coefficients of monomials give the Fan-Jarvis-Ruan-Witten invariants for the E_(6) simple singularity.Based on such results we also derive several explicit evolutionary PDEs and some low-degree terms of the topological solution for the Drinfeld-Sokolov hierarchy of type F_(4)^((1)).展开更多
In this paper, the time-fractional coupled viscous Burgers' equation(CVBE)and Drinfeld-Sokolov-Wilson equation(DSWE) are solved by the Sawi transform coupled homotopy perturbation method(HPM). The approximate seri...In this paper, the time-fractional coupled viscous Burgers' equation(CVBE)and Drinfeld-Sokolov-Wilson equation(DSWE) are solved by the Sawi transform coupled homotopy perturbation method(HPM). The approximate series solutions to these two equations are obtained. Meanwhile, the absolute error between the approximate solution given in this paper and the exact solution given in the literature is analyzed. By comparison of the graphs of the function when the fractional order α takes different values, the properties of the equations are given as a conclusion.展开更多
In this paper,we construct the addition formulae for several integrable hierarchies,including the discrete KP,the q-deformed KP,the two-component BKP and the D type Drinfeld–Sokolov hierarchies.With the help of the H...In this paper,we construct the addition formulae for several integrable hierarchies,including the discrete KP,the q-deformed KP,the two-component BKP and the D type Drinfeld–Sokolov hierarchies.With the help of the Hirota bilinear equations and τ functions of different kinds of KP hierarchies,we prove that these addition formulae are equivalent to these hierarchies.These studies show that the addition formula in the research of the integrable systems has good universality.展开更多
In this article,the two variable(G'G,1/G)-expansion method is suggested to investigate new and further general multiple exact wave solutions to the Drinfeld-Sokolov-Satsuma-Hirota(DSSH)equation and the shallow wat...In this article,the two variable(G'G,1/G)-expansion method is suggested to investigate new and further general multiple exact wave solutions to the Drinfeld-Sokolov-Satsuma-Hirota(DSSH)equation and the shallow water wave equation which arise in mathematical physics with the aid of computer algebra software,like Mathematica.Three functions and the rational functions solution are found.The method demonstrates power,reliability and efficiency.Indeed,the method is the generalization of the well-known(G/G)-expansion method established by Wang et al.and the method also presents a wider applicability for conducting nonlinear wave equations.展开更多
基金Project supported by the Key Project of Science Research Foundation of Educational Department of Yunnan Province, China (No.5Z0071A)
文摘Ansatz method and the theory of dynamical systems are used to study the traveling wave solutions for the generalized Drinfeld-Sokolov equations. Under two groups of the parametric conditions, more solitary wave solutions, kink and anti-kink wave solutions and periodic wave solutions are obtained. Exact explicit parametric representations of these travelling wave solutions are given.
基金Supported by the National Natural Science Foundation of China under Grant No.11201251the National Natural Science Foundation of China under Grant No.11271210+5 种基金Zhejiang Provincial Natural Science Foundation under Grant No.LY12A01007the Natural Science Foundation of Ningbo under Grant No.2013A610105K.C.Wong Magna Fund in Ningbo Universitythe National Science Foundation of China under Grant No.11371278the Shanghai Municipal Science and Technology Commission under Grant No.12XD1405000the Fundamental Research Funds for the Central Universities of China
文摘In this paper, the dispersionless D-type Drinfeld–Sokolov hierarchy, i.e. a reduction of the dispersionless two-component BKP hierarchy, is studied. The additional symmetry flows of this hierarchy are presented. These flows form an infinite-dimensional Lie algebra of Block type as well as a Lie algebra of Hamiltonian type.
基金supported by National Natural Science Foundation of China(Grant Nos.11601534,11771461 and 11831017)。
文摘In this paper we report some explicit evolutionary PDEs of the Drinfeld-Sokolov hierarchy of type E_(6)^((1)),and show how the unknown functions in these PDEs are related to the tau function.Moreover,for this hierarchy we compute its topological solution of formal series up to a certain degree,whose coefficients of monomials give the Fan-Jarvis-Ruan-Witten invariants for the E_(6) simple singularity.Based on such results we also derive several explicit evolutionary PDEs and some low-degree terms of the topological solution for the Drinfeld-Sokolov hierarchy of type F_(4)^((1)).
基金Project supported by the National Natural Science Foundation of China (No. 10561151)the Basic Science Research Fund in the Universities Directly Under the Inner Mongolia Autonomous Region(No. JY20220003)the Scientific Research Project of Hetao College of China (No. HYZQ202122)。
文摘In this paper, the time-fractional coupled viscous Burgers' equation(CVBE)and Drinfeld-Sokolov-Wilson equation(DSWE) are solved by the Sawi transform coupled homotopy perturbation method(HPM). The approximate series solutions to these two equations are obtained. Meanwhile, the absolute error between the approximate solution given in this paper and the exact solution given in the literature is analyzed. By comparison of the graphs of the function when the fractional order α takes different values, the properties of the equations are given as a conclusion.
基金Supported by the Zhejiang Provincial Natural Science Foundation under Grant No.LY15A010004the National Natural Science Foundation of China under Grant Nos.11201251,11571192+2 种基金the Natural Science Foundation of Ningbo under Grant No.2015A610157supported by the National Natural Science Foundation of China under Grant No.11271210K.C.Wong Magna Fund in Ningbo University
文摘In this paper,we construct the addition formulae for several integrable hierarchies,including the discrete KP,the q-deformed KP,the two-component BKP and the D type Drinfeld–Sokolov hierarchies.With the help of the Hirota bilinear equations and τ functions of different kinds of KP hierarchies,we prove that these addition formulae are equivalent to these hierarchies.These studies show that the addition formula in the research of the integrable systems has good universality.
文摘In this article,the two variable(G'G,1/G)-expansion method is suggested to investigate new and further general multiple exact wave solutions to the Drinfeld-Sokolov-Satsuma-Hirota(DSSH)equation and the shallow water wave equation which arise in mathematical physics with the aid of computer algebra software,like Mathematica.Three functions and the rational functions solution are found.The method demonstrates power,reliability and efficiency.Indeed,the method is the generalization of the well-known(G/G)-expansion method established by Wang et al.and the method also presents a wider applicability for conducting nonlinear wave equations.