Resonance drilling is a new technology, still at the laboratory stage. It has great potential to improve rock fragmentation efficiency. We analyzed the amplitude-frequency characteristics of steady- state mechanical v...Resonance drilling is a new technology, still at the laboratory stage. It has great potential to improve rock fragmentation efficiency. We analyzed the amplitude-frequency characteristics of steady- state mechanical vibration excited by harmonic vibration in rocks and an apparatus was built to achieve high fi'equency vibration of rock. The influence of rock drillability, rotary speed, excitation frequency, and other parameters on the rate of penetration (ROP) in resonance drilling was analyzed. The results show that the rock drillability decreased with an increase in excitation frequency. When drilling with a large size drill bit, the ROP increased with excitation frequency. The ROP reached a maximum value at the resonant frequency of the rock. Tile ROP of the bit increased linearly with rotary speed when no vibration was applied on the rock and increased approximately exponentially when harmonic vibration was applied. In addition, the resonant frequency of the rock was changing during the process of rock fi'agmentation, so in order to achieve tile desired resonance of the rock, it is necessary to detemaine an appropriate hamlonic vibration excitation frequency.展开更多
基金funded by National Natural Science Foundation of China(Grant No.51274072)Youth Science Foundation of Heilongjiang Province(Grant No.QC2012C022)
文摘Resonance drilling is a new technology, still at the laboratory stage. It has great potential to improve rock fragmentation efficiency. We analyzed the amplitude-frequency characteristics of steady- state mechanical vibration excited by harmonic vibration in rocks and an apparatus was built to achieve high fi'equency vibration of rock. The influence of rock drillability, rotary speed, excitation frequency, and other parameters on the rate of penetration (ROP) in resonance drilling was analyzed. The results show that the rock drillability decreased with an increase in excitation frequency. When drilling with a large size drill bit, the ROP increased with excitation frequency. The ROP reached a maximum value at the resonant frequency of the rock. Tile ROP of the bit increased linearly with rotary speed when no vibration was applied on the rock and increased approximately exponentially when harmonic vibration was applied. In addition, the resonant frequency of the rock was changing during the process of rock fi'agmentation, so in order to achieve tile desired resonance of the rock, it is necessary to detemaine an appropriate hamlonic vibration excitation frequency.