Autler-Townes splitting in absorption spectra of the excited states 6^ 2P3/2 - 8^2S1/2 Of cold cesium atoms confined in a magneto-optical trap has been observed. Experimental data of the Autler-Townes splitting fit we...Autler-Townes splitting in absorption spectra of the excited states 6^ 2P3/2 - 8^2S1/2 Of cold cesium atoms confined in a magneto-optical trap has been observed. Experimental data of the Autler-Townes splitting fit well to the dressedatom theory, by which the fact of the cold atoms dressed by cooling/trapping laser beams is revealed. The results of the theoretical fitting with experiment not only told us the effective Rabi frequency cold atoms experienced, but also could be used for measuring the probability amplitudes of the dressed states.展开更多
The spontaneous emission property ofΛ-type three-level atom driven by the bichromatic field in the anisotropic double-band photonic crystal is calculated by n-times iteration method.The influence of different paramet...The spontaneous emission property ofΛ-type three-level atom driven by the bichromatic field in the anisotropic double-band photonic crystal is calculated by n-times iteration method.The influence of different parameters on atomic spontaneous emission is studied,and the phenomena of atomic spontaneous emission are explained in the dressed state representation.It is found that the spontaneous emission spectra of the atom driven by the bichromatic field presents a multi-peak comb structure.The position of the emission peak is determined by the initial state of the atom,and the interval between the neighboring emission peaks is the detuningδof the bichromatic field.When the ratio between Rabi frequency intensity and the detuningδof the bichromatic field remains unchanged,the intensity of each emitted peak remains invariant.The spontaneously emitted peak can be annihilated in the band gap and enhanced near the band edge in the anisotropic photonic crystals.Meanwhile,we also observe the fluorescence quenching phenomenon in the spontaneous emission spectra.The research in this paper provides the theoretical guidance for the control of atomic spontaneous emission.展开更多
This paper studies the narrow spectral feature appearing in a four-level system coupled by two strong coherent fields and probed by a weak laser field. The linewidth is examined as a function of the Rabi frequencies o...This paper studies the narrow spectral feature appearing in a four-level system coupled by two strong coherent fields and probed by a weak laser field. The linewidth is examined as a function of the Rabi frequencies of coupling fields, and the result is explained by using the dressed-state formalism.展开更多
We present a dissipative scheme to generate an entangled steady-state between two superconducting transmon qutrits separately embedded in two coupled transmission line resonators in a circuit quantum electrodynamics(Q...We present a dissipative scheme to generate an entangled steady-state between two superconducting transmon qutrits separately embedded in two coupled transmission line resonators in a circuit quantum electrodynamics(QED)setup.In our scheme,the resonant qutrit-resonator interaction and photon hopping between resonators jointly induce asymmetric energy gaps in the dressed state subspaces.The coherent driving fields induce the specific dressed state transition and the dissipative processes lead to the gradual accumulation in the population of target state,combination of both drives the system into a steady-state entanglement.Numerical simulation shows that the maximally entangled state can be produced with high fidelity and strong robustness against the cavity decay and qutrit decay,and no requirements for accurate time control.The scheme is achievable with the current experimental technologies.展开更多
We investigate high-precision three-dimensional (3D) atom localization in a coherently-driven, four- level atomic system via spontaneous emission. Space-dependent atom-field interactions allow atomic position inform...We investigate high-precision three-dimensional (3D) atom localization in a coherently-driven, four- level atomic system via spontaneous emission. Space-dependent atom-field interactions allow atomic position information to be obtained by measuring parameters, atoms within a certain range can be spontaneous emission. By properly varying system localized with nearly a probability of 100% and a maximal resolution of -0.04λ. This scheme may be useful for the high-precision measurement of the center-of-mass wave functions of moving atoms and in atom nanolithography.展开更多
A dressed-state perturbation theory beyond the rotating wave approximation (RWA) is presented to investigate the interaction between a two-level electronic transition of polar molecules and a quantized cavity field....A dressed-state perturbation theory beyond the rotating wave approximation (RWA) is presented to investigate the interaction between a two-level electronic transition of polar molecules and a quantized cavity field. Analytical expressions can be explicitly derived for both the ground- and excited-state-energy spectrums and wave functions of the system, where the contribution of permanent dipole moments (PDM) and the counter-rotating wave term (CRT) can be shown separately. The validity of these explicit results is discussed by comparison with the direct numerical simulation. Compared to the CRT coupling, PDM results in the coupling of more dressed states and the energy shift is proportional to the square of the normalized permanent dipole difference, and a greater Bloch-Siegert shift can be produced in the giant dipole molecule cavity QED. In addition, our method can also be extended to the solution of the two-level atom Rabi model Hamiltonian beyond the RWA.展开更多
We present a theoretical study of quantum coherent effects in a A-three-level system with a strong bichromatic coupling field and a weak probe field. When one component of the strong bichromatic coupling field is reso...We present a theoretical study of quantum coherent effects in a A-three-level system with a strong bichromatic coupling field and a weak probe field. When one component of the strong bichromatic coupling field is resonant with a corresponding transition and the other is detuning with an integer fraction of the Rabi frequency of the resonant field, the absorption spectrum exhibits a series of symmetrical doublets. While two frequencies of the strong bichromatic coupling field are symmetrically detuned from the transition, the position and the relative intensity of the absorption peak are both affected by the coupling field intensity and detuning. An explanation of the spectrum is given in term of the dressed-state formalism.展开更多
We propose schemes to realize quantum state transfer and prepare quantum entanglement in coupled cavity and cavity-fiber-cavity systems,respectively,by using the dressed state method.We first give the expression of pu...We propose schemes to realize quantum state transfer and prepare quantum entanglement in coupled cavity and cavity-fiber-cavity systems,respectively,by using the dressed state method.We first give the expression of pulses shape by using dressed states and then find a group of Gaussian pulses that are easy to realize in experiment to replace the ideal pulses by curve fitting.We also study the influence of some parameters fluctuation,atomic spontaneous emission,and photon leakage on fidelity.The results show that our schemes have good robustness.Because the atoms are trapped in different cavities,it is easy to perform different operations on different atoms.The proposed schemes have the potential applications in dressed states for distributed quantum information processing tasks.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60978017,61078051,10974125,and 60821004)the NCET Project from the Education Ministry of China (Grant No. NCET-07-0524)the Specialized Research Fund for the Doctoral Program of China (Grant No. 20070108003)
文摘Autler-Townes splitting in absorption spectra of the excited states 6^ 2P3/2 - 8^2S1/2 Of cold cesium atoms confined in a magneto-optical trap has been observed. Experimental data of the Autler-Townes splitting fit well to the dressedatom theory, by which the fact of the cold atoms dressed by cooling/trapping laser beams is revealed. The results of the theoretical fitting with experiment not only told us the effective Rabi frequency cold atoms experienced, but also could be used for measuring the probability amplitudes of the dressed states.
基金Project supported by the Natural Science Foundation of Jilin Province of China(Grant No.20220101031JC)。
文摘The spontaneous emission property ofΛ-type three-level atom driven by the bichromatic field in the anisotropic double-band photonic crystal is calculated by n-times iteration method.The influence of different parameters on atomic spontaneous emission is studied,and the phenomena of atomic spontaneous emission are explained in the dressed state representation.It is found that the spontaneous emission spectra of the atom driven by the bichromatic field presents a multi-peak comb structure.The position of the emission peak is determined by the initial state of the atom,and the interval between the neighboring emission peaks is the detuningδof the bichromatic field.When the ratio between Rabi frequency intensity and the detuningδof the bichromatic field remains unchanged,the intensity of each emitted peak remains invariant.The spontaneously emitted peak can be annihilated in the band gap and enhanced near the band edge in the anisotropic photonic crystals.Meanwhile,we also observe the fluorescence quenching phenomenon in the spontaneous emission spectra.The research in this paper provides the theoretical guidance for the control of atomic spontaneous emission.
基金Project supported by the Natural Science Foundation from Hebei Province, China (Grant No A2005000091)
文摘This paper studies the narrow spectral feature appearing in a four-level system coupled by two strong coherent fields and probed by a weak laser field. The linewidth is examined as a function of the Rabi frequencies of coupling fields, and the result is explained by using the dressed-state formalism.
文摘We present a dissipative scheme to generate an entangled steady-state between two superconducting transmon qutrits separately embedded in two coupled transmission line resonators in a circuit quantum electrodynamics(QED)setup.In our scheme,the resonant qutrit-resonator interaction and photon hopping between resonators jointly induce asymmetric energy gaps in the dressed state subspaces.The coherent driving fields induce the specific dressed state transition and the dissipative processes lead to the gradual accumulation in the population of target state,combination of both drives the system into a steady-state entanglement.Numerical simulation shows that the maximally entangled state can be produced with high fidelity and strong robustness against the cavity decay and qutrit decay,and no requirements for accurate time control.The scheme is achievable with the current experimental technologies.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 11674002) and Doctoral Scientific Research Fund of Anhui University.
文摘We investigate high-precision three-dimensional (3D) atom localization in a coherently-driven, four- level atomic system via spontaneous emission. Space-dependent atom-field interactions allow atomic position information to be obtained by measuring parameters, atoms within a certain range can be spontaneous emission. By properly varying system localized with nearly a probability of 100% and a maximal resolution of -0.04λ. This scheme may be useful for the high-precision measurement of the center-of-mass wave functions of moving atoms and in atom nanolithography.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB01010200)the Hundred Talents Program of the Chinese Academy of Sciences(Grant No.Y321311401)+2 种基金the National Natural Science Foundation of China(Grant Nos.61475139,11347147,and11247014)the National Basics Research Program of China(Grant No.2013CB329501)the Zhejiang Provincial Natural Science Foundation(Grant No.LQ13A040006)
文摘A dressed-state perturbation theory beyond the rotating wave approximation (RWA) is presented to investigate the interaction between a two-level electronic transition of polar molecules and a quantized cavity field. Analytical expressions can be explicitly derived for both the ground- and excited-state-energy spectrums and wave functions of the system, where the contribution of permanent dipole moments (PDM) and the counter-rotating wave term (CRT) can be shown separately. The validity of these explicit results is discussed by comparison with the direct numerical simulation. Compared to the CRT coupling, PDM results in the coupling of more dressed states and the energy shift is proportional to the square of the normalized permanent dipole difference, and a greater Bloch-Siegert shift can be produced in the giant dipole molecule cavity QED. In addition, our method can also be extended to the solution of the two-level atom Rabi model Hamiltonian beyond the RWA.
基金Project supported by the Natural Science Foundation of Hebei Province,China(Grant No.A2009000140)
文摘We present a theoretical study of quantum coherent effects in a A-three-level system with a strong bichromatic coupling field and a weak probe field. When one component of the strong bichromatic coupling field is resonant with a corresponding transition and the other is detuning with an integer fraction of the Rabi frequency of the resonant field, the absorption spectrum exhibits a series of symmetrical doublets. While two frequencies of the strong bichromatic coupling field are symmetrically detuned from the transition, the position and the relative intensity of the absorption peak are both affected by the coupling field intensity and detuning. An explanation of the spectrum is given in term of the dressed-state formalism.
基金Project supported by the National Natural Science Foundation of China(Grant No.11804308).
文摘We propose schemes to realize quantum state transfer and prepare quantum entanglement in coupled cavity and cavity-fiber-cavity systems,respectively,by using the dressed state method.We first give the expression of pulses shape by using dressed states and then find a group of Gaussian pulses that are easy to realize in experiment to replace the ideal pulses by curve fitting.We also study the influence of some parameters fluctuation,atomic spontaneous emission,and photon leakage on fidelity.The results show that our schemes have good robustness.Because the atoms are trapped in different cavities,it is easy to perform different operations on different atoms.The proposed schemes have the potential applications in dressed states for distributed quantum information processing tasks.