Barbed tributaries flowing in southeast directions, an asymmetric drainage divide with both the South Fork Grand River and the North Fork Moreau River, and the Jump-off escarpment-surrounded basin (interpreted here to...Barbed tributaries flowing in southeast directions, an asymmetric drainage divide with both the South Fork Grand River and the North Fork Moreau River, and the Jump-off escarpment-surrounded basin (interpreted here to be a large abandoned headcut) are examples of topographic map evidence suggesting the north oriented Little Missouri River valley eroded headward across a large southeast oriented anastomosing complex of ice-marginal melt water flood flow channels that once crossed Harding County, South Dakota. Additional evidence includes southeast oriented tributaries to the northeast oriented South Fork Grand River and multiple divide crossings (e.g. through valleys and wind gaps) on the Boxelder Creek-Little Missouri River divide (in eastern Montana and west of the Little Missouri River) and suggests deep regional erosion occurred as the north oriented Little Missouri River valley eroded headward into and across the region. Harding County is located south and west of the southwest limit of coarse-grained glacial erratic material and ice-marginal melt water flow routes logically should have crossed it. Deep melt water erosion of Harding County and adjacent eastern Montana regions to the west is not consistent with many previous drainage history and glacial history interpretations, but is consistent with deep erosion by continental ice sheets.展开更多
Drainage divides along a southern Laramie Range crest area and in the nearby southeast Wyoming Gangplank area (as observed on detailed topographic maps) suggest present-day drainage routes in the Cheyenne Tablelands r...Drainage divides along a southern Laramie Range crest area and in the nearby southeast Wyoming Gangplank area (as observed on detailed topographic maps) suggest present-day drainage routes in the Cheyenne Tablelands region originated as headward erosion of south-oriented valleys (now the downstream Lodgepole, Crow, and Lone Tree Creek valleys) from an actively eroding northeast-oriented South Platte River valley captured flood flow in the south half of a large east-oriented anastomosing channel complex while headward erosion of a north-oriented valley (now the downstream Horse Creek valley) from the southeast-oriented North Platte River valley captured the north half of the same large anastomosing channel complex. The Gangplank, which today serves as a low gradient ramp of Tertiary Ogallala Formation sediments leading from the Great Plains to the Laramie Range erosion surface, is located along the Crow Creek-Lone Tree Creek drainage divide and low points along that divide (referred to here as divide crossings) suggest, prior to headward erosion of what is now its south-oriented downstream Lone Tree Creek valley, upstream east-oriented Lone Tree Creek drainage routes were intertwined with east-oriented Crow Creek drainage routes, which today flow much further in an east direction (than east-oriented upstream Lone Tree Creek drainage routes) before also turning in a south direction to reach the South Platte River. The ability of the commonly accepted regional geomorphology paradigm to explain this topographic map evidence is then compared with a fundamentally different and new regional geomorphology paradigm’s ability to explain the same evidence. While both paradigms offer possible explanations the new paradigm, which requires headward erosion of the valleys to have occurred as massive continental ice sheet melt water floods crossed the region, explains much more of the drainage system evidence and also permits much more detailed explanations.展开更多
From the viewpoint of system approach, karst drainage basin is the ideel unit in studying structure and evolutional regularity of karst hydrogeomorpholegical system, It is because the drainage basin is a natural unit ...From the viewpoint of system approach, karst drainage basin is the ideel unit in studying structure and evolutional regularity of karst hydrogeomorpholegical system, It is because the drainage basin is a natural unit with clear border which can reflect the internal structure and outside environment of the system and their interrelation. Through the research on karst hydrology and geomorphology, four basic characteristics of the karst drainage basin have been identified.展开更多
A new Cenozoic geology and glacial history paradigm (new paradigm), fundamentally different from the accepted Cenozoic geology and glacial history paradigm (accepted paradigm), describes a thick North American contine...A new Cenozoic geology and glacial history paradigm (new paradigm), fundamentally different from the accepted Cenozoic geology and glacial history paradigm (accepted paradigm), describes a thick North American continental icesheet (located where continental icesheets are usually reported to have been) which by deep erosion and uplift of surrounding regions created and occupied a deep “hole” (the accepted paradigm does not see this thick ice sheet or the deep “hole”). Unusual erosional landform features in the southeast Oklahoma Pontotoc County region including the asymmetric Canadian-Red River drainage divide, a large escarpment-surrounded basin in which most south-oriented Clear Boggy Creek headwaters begin, and a large escarpment-surrounded upland on which the south-oriented Blue River begins, are used to test the new paradigm’s ability to use large and prolonged south-oriented melt water floods to explain previously unexplained or poorly explained detailed topographic map drainage system and erosional landform evidence. Numerous low points (referred to as divide crossings) indicate large and prolonged south-oriented melt water floods did flow across what is now the Canadian-Red River drainage divide (an interpretation also consistent with Clear Boggy Creek escarpment-surrounded basin and Blue River escarpment-surrounded upland shapes). The new paradigm described massive and prolonged melt water floods also account for previously unrecognized deep regional erosion (which is determinable from detailed topographic map evidence). East-oriented Canadian River valley headward erosion (from the Arkansas River valley) diverted the long-lived south-oriented meltwater floods to the Arkansas River valley and to what ultimately became the deep “hole’s” only southern exit. Previous southeast Oklahoma drainage history interpretations (made from the accepted paradigm perspective in which Rocky Mountain glacier melt water flowed to east-oriented rivers) do not provide adequate water volumes or flow directions 展开更多
文摘Barbed tributaries flowing in southeast directions, an asymmetric drainage divide with both the South Fork Grand River and the North Fork Moreau River, and the Jump-off escarpment-surrounded basin (interpreted here to be a large abandoned headcut) are examples of topographic map evidence suggesting the north oriented Little Missouri River valley eroded headward across a large southeast oriented anastomosing complex of ice-marginal melt water flood flow channels that once crossed Harding County, South Dakota. Additional evidence includes southeast oriented tributaries to the northeast oriented South Fork Grand River and multiple divide crossings (e.g. through valleys and wind gaps) on the Boxelder Creek-Little Missouri River divide (in eastern Montana and west of the Little Missouri River) and suggests deep regional erosion occurred as the north oriented Little Missouri River valley eroded headward into and across the region. Harding County is located south and west of the southwest limit of coarse-grained glacial erratic material and ice-marginal melt water flow routes logically should have crossed it. Deep melt water erosion of Harding County and adjacent eastern Montana regions to the west is not consistent with many previous drainage history and glacial history interpretations, but is consistent with deep erosion by continental ice sheets.
文摘Drainage divides along a southern Laramie Range crest area and in the nearby southeast Wyoming Gangplank area (as observed on detailed topographic maps) suggest present-day drainage routes in the Cheyenne Tablelands region originated as headward erosion of south-oriented valleys (now the downstream Lodgepole, Crow, and Lone Tree Creek valleys) from an actively eroding northeast-oriented South Platte River valley captured flood flow in the south half of a large east-oriented anastomosing channel complex while headward erosion of a north-oriented valley (now the downstream Horse Creek valley) from the southeast-oriented North Platte River valley captured the north half of the same large anastomosing channel complex. The Gangplank, which today serves as a low gradient ramp of Tertiary Ogallala Formation sediments leading from the Great Plains to the Laramie Range erosion surface, is located along the Crow Creek-Lone Tree Creek drainage divide and low points along that divide (referred to here as divide crossings) suggest, prior to headward erosion of what is now its south-oriented downstream Lone Tree Creek valley, upstream east-oriented Lone Tree Creek drainage routes were intertwined with east-oriented Crow Creek drainage routes, which today flow much further in an east direction (than east-oriented upstream Lone Tree Creek drainage routes) before also turning in a south direction to reach the South Platte River. The ability of the commonly accepted regional geomorphology paradigm to explain this topographic map evidence is then compared with a fundamentally different and new regional geomorphology paradigm’s ability to explain the same evidence. While both paradigms offer possible explanations the new paradigm, which requires headward erosion of the valleys to have occurred as massive continental ice sheet melt water floods crossed the region, explains much more of the drainage system evidence and also permits much more detailed explanations.
文摘From the viewpoint of system approach, karst drainage basin is the ideel unit in studying structure and evolutional regularity of karst hydrogeomorpholegical system, It is because the drainage basin is a natural unit with clear border which can reflect the internal structure and outside environment of the system and their interrelation. Through the research on karst hydrology and geomorphology, four basic characteristics of the karst drainage basin have been identified.
文摘A new Cenozoic geology and glacial history paradigm (new paradigm), fundamentally different from the accepted Cenozoic geology and glacial history paradigm (accepted paradigm), describes a thick North American continental icesheet (located where continental icesheets are usually reported to have been) which by deep erosion and uplift of surrounding regions created and occupied a deep “hole” (the accepted paradigm does not see this thick ice sheet or the deep “hole”). Unusual erosional landform features in the southeast Oklahoma Pontotoc County region including the asymmetric Canadian-Red River drainage divide, a large escarpment-surrounded basin in which most south-oriented Clear Boggy Creek headwaters begin, and a large escarpment-surrounded upland on which the south-oriented Blue River begins, are used to test the new paradigm’s ability to use large and prolonged south-oriented melt water floods to explain previously unexplained or poorly explained detailed topographic map drainage system and erosional landform evidence. Numerous low points (referred to as divide crossings) indicate large and prolonged south-oriented melt water floods did flow across what is now the Canadian-Red River drainage divide (an interpretation also consistent with Clear Boggy Creek escarpment-surrounded basin and Blue River escarpment-surrounded upland shapes). The new paradigm described massive and prolonged melt water floods also account for previously unrecognized deep regional erosion (which is determinable from detailed topographic map evidence). East-oriented Canadian River valley headward erosion (from the Arkansas River valley) diverted the long-lived south-oriented meltwater floods to the Arkansas River valley and to what ultimately became the deep “hole’s” only southern exit. Previous southeast Oklahoma drainage history interpretations (made from the accepted paradigm perspective in which Rocky Mountain glacier melt water flowed to east-oriented rivers) do not provide adequate water volumes or flow directions