Reduction of drag torque in disengaged wet clutch is one of important potentials for vehicle transmission improvement. The flow of the oil film in clutch clearance is investigated. A three-dimension Navier-Stokes(N-S)...Reduction of drag torque in disengaged wet clutch is one of important potentials for vehicle transmission improvement. The flow of the oil film in clutch clearance is investigated. A three-dimension Navier-Stokes(N-S) equation based on laminar flow is presented to model the drag torque. Pressure and speed distribution in radial and circumferential directions are deduced. The theoretical analysis reveals that oil flow acceleration in radial direction caused by centrifugal force is the key reason for the shrinking of oil film as constant feeding flow rate. The peak drag torque occurs at the beginning of oil film shrinking. A variable is introduced to describe effective oil film area and drag torque after oil film shrinking is well evaluated with the variable. Under the working condition, tests were made to obtain drag torque curves at different clutch speed and oil viscosity. The tests confirm that simulation results agree with test data. The model performs well in the prediction of drag torque and lays a theoretical foundation to reduce it.展开更多
Reduction of drag torque is one of important potentials to improve transmission efficiency.Existing mathematical model of drag torque was not accurate to predict the decrease after oil film shrinking because of the di...Reduction of drag torque is one of important potentials to improve transmission efficiency.Existing mathematical model of drag torque was not accurate to predict the decrease after oil film shrinking because of the difficulty in modeling the flow pattern between two plates.Flow pattern was considered as laminar flow and full oil film in the gap between two plates in traditional model.Subsequent equivalent circumferential degree model presented an improvement in oil film shrinking due to centrifugal force,but was also based on full oil film in the gap,which resulted difference between model prediction and experimental data.The objective of this paper is to develop an accurate mathematical model for the above problem by using experimental verification.An experimental apparatus was set up to test drag torque of disengaged wet clutch consisting of single friction and separate plate.A high speed camera was used to record the flow pattern through transparent quartz disk plate.The visualization of flow pattern in the clearance was investigated to evaluate the characteristics of oil film shrinking.Visual test results reveal that the oil film begins to shrink from outer radius to inner radius at the stationary plate and only flows along the rotating plate after shrinking.Meanwhile,drag torque decreases sharply due to little contact area between the stationary plate and the oil.A three-dimensional Navier-Stokes (N-S) equation based on laminar flow is presented to model the drag torque.Pressure distributions in radial and circumferential directions as well as speed distributions are deduced.The model analysis reveals that the acceleration of flow in radial direction caused by centrifugal force is the key reason for the shrinking at the constant feeding flow rate.An approach to descript flow pattern was presented on the basis of visual observation.The drag torque predicted by the model agrees well with test data for non-grooved wet clutch.The proposed model enhances the precision for predicting drag torque,and lays down 展开更多
大位移井的井眼轨迹比较复杂,为准确地计算实钻井眼中管柱的摩阻/扭矩分布,采用了三维摩阻/扭矩计算模型和软件。文中给出了南海流花油田已钻5口大位移井的钻井与完井数据,并跟踪第5口超大位移井(C1ERW 5井),应用自主研发的摩阻/扭矩数...大位移井的井眼轨迹比较复杂,为准确地计算实钻井眼中管柱的摩阻/扭矩分布,采用了三维摩阻/扭矩计算模型和软件。文中给出了南海流花油田已钻5口大位移井的钻井与完井数据,并跟踪第5口超大位移井(C1ERW 5井),应用自主研发的摩阻/扭矩数值分析软件,对钻井及下套管作业过程中的摩阻/扭矩分布进行了预测分析,计算结果与实测数据吻合良好。同时,针对流花超大位移井所使用的带Power D rive系统的底部钻具组合,定量探讨了旋转导向钻井系统的力学特性,并分析了其影响参数导向控制力、钻压、PD翼肋位置对钻头侧向力的影响,计算分析结果表明,通过调整PD翼肋导向控制力的大小和方位,便可有效地控制井眼轨迹。该研究可为后续施工的超大位移井工程提供重要参考。展开更多
Extended reach wells (ERWs), especially horizontal extended reach well with a high HD (horizontal displacement) to TVD (true vertical depth) ratio, represent a frontier technology and challenge the drilling limi...Extended reach wells (ERWs), especially horizontal extended reach well with a high HD (horizontal displacement) to TVD (true vertical depth) ratio, represent a frontier technology and challenge the drilling limitations. Oil and gas reservoir in beaches or lakes and offshore can be effectively exploited by using extended reach drilling (ERD) technology. This paper focuses on the difficult technological problems encountered during exploiting the Liuhua 11-1 oil field in the South China Sea, China. Emphasis is on investigating the key subjects including prediction and control of open hole limit extension in offshore ERD, prediction of casing wear and its prevention and torque reduction, φ244.5mm casing running with floating collars to control drag force, and steerable drilling modes. The basic concept of limit extension in ERD is presented and the prediction method for open hole limit extension is given in this paper. A set of advanced drilling mechanics and control technology has been established and its practical results are verified by field cases. All those efforts may be significant for further investigating and practicing ERD limit theory and control technology in the future.展开更多
湿式离合器高速旋转时内部形成的复杂油气两相流动会对离合器的性能产生影响,因而需要对湿式离合器内的两相流动特性展开研究。基于有限体积法,采用流体体积函数(Volume of fluid,VOF)多相流模型、RNG k-ε湍流模型,建立考虑径向沟槽影...湿式离合器高速旋转时内部形成的复杂油气两相流动会对离合器的性能产生影响,因而需要对湿式离合器内的两相流动特性展开研究。基于有限体积法,采用流体体积函数(Volume of fluid,VOF)多相流模型、RNG k-ε湍流模型,建立考虑径向沟槽影响的三维湿式离合器对偶片间油气两相流动模型。通过对流动模型中油气两相N-S方程进行数值求解,获得了湿式离合器对偶片间油气两相流动的流场分布特性,分析沟槽数量和转速对流场中油相分布及带排转矩的影响。结果表明:湿式离合器内部的润滑油分布是不均匀的,随沟槽的分布呈现出周期性变化,沟槽处润滑油油液体积分数最大;转速和沟槽数目的增加均会使对偶片间油液体积分数下降,影响湿式离合器内润滑油分布的不均匀性;沟槽总面积不变时,增加沟槽数量能使带排转矩最大值减小,最大转矩对应的转速提前。本研究为湿式离合器内部流场分析和带排转矩研究提供了一种新方法。展开更多
基金supported by National Defense Arming Pre-researching Project(Grant No. 40402060102)
文摘Reduction of drag torque in disengaged wet clutch is one of important potentials for vehicle transmission improvement. The flow of the oil film in clutch clearance is investigated. A three-dimension Navier-Stokes(N-S) equation based on laminar flow is presented to model the drag torque. Pressure and speed distribution in radial and circumferential directions are deduced. The theoretical analysis reveals that oil flow acceleration in radial direction caused by centrifugal force is the key reason for the shrinking of oil film as constant feeding flow rate. The peak drag torque occurs at the beginning of oil film shrinking. A variable is introduced to describe effective oil film area and drag torque after oil film shrinking is well evaluated with the variable. Under the working condition, tests were made to obtain drag torque curves at different clutch speed and oil viscosity. The tests confirm that simulation results agree with test data. The model performs well in the prediction of drag torque and lays a theoretical foundation to reduce it.
基金supported by National Defense Arming Pre-researching Project of China(Grant No.40402060102)
文摘Reduction of drag torque is one of important potentials to improve transmission efficiency.Existing mathematical model of drag torque was not accurate to predict the decrease after oil film shrinking because of the difficulty in modeling the flow pattern between two plates.Flow pattern was considered as laminar flow and full oil film in the gap between two plates in traditional model.Subsequent equivalent circumferential degree model presented an improvement in oil film shrinking due to centrifugal force,but was also based on full oil film in the gap,which resulted difference between model prediction and experimental data.The objective of this paper is to develop an accurate mathematical model for the above problem by using experimental verification.An experimental apparatus was set up to test drag torque of disengaged wet clutch consisting of single friction and separate plate.A high speed camera was used to record the flow pattern through transparent quartz disk plate.The visualization of flow pattern in the clearance was investigated to evaluate the characteristics of oil film shrinking.Visual test results reveal that the oil film begins to shrink from outer radius to inner radius at the stationary plate and only flows along the rotating plate after shrinking.Meanwhile,drag torque decreases sharply due to little contact area between the stationary plate and the oil.A three-dimensional Navier-Stokes (N-S) equation based on laminar flow is presented to model the drag torque.Pressure distributions in radial and circumferential directions as well as speed distributions are deduced.The model analysis reveals that the acceleration of flow in radial direction caused by centrifugal force is the key reason for the shrinking at the constant feeding flow rate.An approach to descript flow pattern was presented on the basis of visual observation.The drag torque predicted by the model agrees well with test data for non-grooved wet clutch.The proposed model enhances the precision for predicting drag torque,and lays down
文摘大位移井的井眼轨迹比较复杂,为准确地计算实钻井眼中管柱的摩阻/扭矩分布,采用了三维摩阻/扭矩计算模型和软件。文中给出了南海流花油田已钻5口大位移井的钻井与完井数据,并跟踪第5口超大位移井(C1ERW 5井),应用自主研发的摩阻/扭矩数值分析软件,对钻井及下套管作业过程中的摩阻/扭矩分布进行了预测分析,计算结果与实测数据吻合良好。同时,针对流花超大位移井所使用的带Power D rive系统的底部钻具组合,定量探讨了旋转导向钻井系统的力学特性,并分析了其影响参数导向控制力、钻压、PD翼肋位置对钻头侧向力的影响,计算分析结果表明,通过调整PD翼肋导向控制力的大小和方位,便可有效地控制井眼轨迹。该研究可为后续施工的超大位移井工程提供重要参考。
基金support from the project of CNOOC China Limited-Shenzhen (Grant No. Z2007SLSZ-034)the foundation project of the State Key Laboratory of Petroleum Resource and Prospecting (Grant No. PRPDX2008-08) is gratefully acknowledged
文摘Extended reach wells (ERWs), especially horizontal extended reach well with a high HD (horizontal displacement) to TVD (true vertical depth) ratio, represent a frontier technology and challenge the drilling limitations. Oil and gas reservoir in beaches or lakes and offshore can be effectively exploited by using extended reach drilling (ERD) technology. This paper focuses on the difficult technological problems encountered during exploiting the Liuhua 11-1 oil field in the South China Sea, China. Emphasis is on investigating the key subjects including prediction and control of open hole limit extension in offshore ERD, prediction of casing wear and its prevention and torque reduction, φ244.5mm casing running with floating collars to control drag force, and steerable drilling modes. The basic concept of limit extension in ERD is presented and the prediction method for open hole limit extension is given in this paper. A set of advanced drilling mechanics and control technology has been established and its practical results are verified by field cases. All those efforts may be significant for further investigating and practicing ERD limit theory and control technology in the future.
文摘湿式离合器高速旋转时内部形成的复杂油气两相流动会对离合器的性能产生影响,因而需要对湿式离合器内的两相流动特性展开研究。基于有限体积法,采用流体体积函数(Volume of fluid,VOF)多相流模型、RNG k-ε湍流模型,建立考虑径向沟槽影响的三维湿式离合器对偶片间油气两相流动模型。通过对流动模型中油气两相N-S方程进行数值求解,获得了湿式离合器对偶片间油气两相流动的流场分布特性,分析沟槽数量和转速对流场中油相分布及带排转矩的影响。结果表明:湿式离合器内部的润滑油分布是不均匀的,随沟槽的分布呈现出周期性变化,沟槽处润滑油油液体积分数最大;转速和沟槽数目的增加均会使对偶片间油液体积分数下降,影响湿式离合器内润滑油分布的不均匀性;沟槽总面积不变时,增加沟槽数量能使带排转矩最大值减小,最大转矩对应的转速提前。本研究为湿式离合器内部流场分析和带排转矩研究提供了一种新方法。