A simple laser-diode pumped acoustic-optic Q-switched fiber laser is reported by using China-made largemode-area ytterbium-doped fiber. Q-switched pulses with a beam quality factor of M^2 ≈ 2 and several hundred nano...A simple laser-diode pumped acoustic-optic Q-switched fiber laser is reported by using China-made largemode-area ytterbium-doped fiber. Q-switched pulses with a beam quality factor of M^2 ≈ 2 and several hundred nanoseconds pulse duration are achieved at the repetition rate of 1 - 50 kHz. When the repetition rate is 1 kHz, the pulse energy is 0.93 mJ with the pulse duration of 132 ns. Meanwhile, the profile of laser pulses shows some mode-locking phenomena, the mechanism of the phenomena is discussed.展开更多
We have proposed and demonstrated a double-cladding fiber (DCF) with cladding?mode resonance property for broadband acoustic vibration sensing. Since the fundamental mode in the core waveguide is able to be coupled to...We have proposed and demonstrated a double-cladding fiber (DCF) with cladding?mode resonance property for broadband acoustic vibration sensing. Since the fundamental mode in the core waveguide is able to be coupled to LP05 mode in the tube waveguide once the phase-matching condition is fulfilled, the transmission spectrum can exhibit a dip with a large extinction ratio. An acoustic vibration could induce the wavelength shift of such transmission spectrum, so that the intensity variation at a wavelength near the dip is coded with the information of the acoustic vibration signal. By demodulating the response of intensity variation, the frequency of the applied acoustic vibration signal can be recovered. Such a DCF-based sensor with an intensity modulation could measure the acoustic vibration with a broadband frequency range from 1 Hz to 400 kHz and exhibits the maximum signal-to-noise ratio (SNR) of ?80.79 dB when the vibration frequency is 20 kHz. The obtained results show that the proposed DCF-based acoustic vibration sensor has a potential application in environmental assessment, structural damage detection, and health monitoring.展开更多
A large-mode-area neodymium-doped silicate photonic bandgap fiber was theoretically designed and experimen- tMly demonstrated. The relative index step between the high-index rods and the background glass was -0.5%, wh...A large-mode-area neodymium-doped silicate photonic bandgap fiber was theoretically designed and experimen- tMly demonstrated. The relative index step between the high-index rods and the background glass was -0.5%, which is the lowest cladding index difference reported on rare-earth-doped all-solid photonic bandgap fibers to our knowledge. An output power of 3.6 W with a slope efficiency of 31- was obtained for a 100-cm-long fiber.展开更多
Considering the wavelength characteristics of the pump high-power laser diode, a modified Fabry-Perot fiber laser resonator is designed. And a fiber laser with more than 10Watts output, near diffraction-limited and op...Considering the wavelength characteristics of the pump high-power laser diode, a modified Fabry-Perot fiber laser resonator is designed. And a fiber laser with more than 10Watts output, near diffraction-limited and operating in the 1110nm region is developed.展开更多
Based on the principle of Fabry-Perot (F-P) interference, a new type of optical fiber curvature sensor is presented,which is fabricated by single-mode fiber(SMF), ceramic tube and double-cladding fiber (DCF). And the ...Based on the principle of Fabry-Perot (F-P) interference, a new type of optical fiber curvature sensor is presented,which is fabricated by single-mode fiber(SMF), ceramic tube and double-cladding fiber (DCF). And the curvature sensing properties are analyzed, and the double-peak method is used to demodulate the cavity length. The experimental results show that the F-P interference spectrum shifts toward long wavelengths with increasing the curvature. And the sensors are placed in different positions on the cantilever to get their different curvature sensitivities. Smaller initial cavity length gives greater sensor sensitivity. The best curvature sensitivity is achieved as 2 554.53 pm/m^(-1) in 0.71—1.18 m^(-1). By demodulating the length of the F-P cavity, the cavity length of sensor 4 is changed by 0.08 mm. Therefore, the sensor has some potential for measure the small displacement.展开更多
基金the National Key Basic Research Project of China.
文摘A simple laser-diode pumped acoustic-optic Q-switched fiber laser is reported by using China-made largemode-area ytterbium-doped fiber. Q-switched pulses with a beam quality factor of M^2 ≈ 2 and several hundred nanoseconds pulse duration are achieved at the repetition rate of 1 - 50 kHz. When the repetition rate is 1 kHz, the pulse energy is 0.93 mJ with the pulse duration of 132 ns. Meanwhile, the profile of laser pulses shows some mode-locking phenomena, the mechanism of the phenomena is discussed.
基金the National Key Research and Development Program of China (Grant No. 2016YFF0100600)the National Natural Science Foundation of China (Grant Nos. 61735009 and 61635006).
文摘We have proposed and demonstrated a double-cladding fiber (DCF) with cladding?mode resonance property for broadband acoustic vibration sensing. Since the fundamental mode in the core waveguide is able to be coupled to LP05 mode in the tube waveguide once the phase-matching condition is fulfilled, the transmission spectrum can exhibit a dip with a large extinction ratio. An acoustic vibration could induce the wavelength shift of such transmission spectrum, so that the intensity variation at a wavelength near the dip is coded with the information of the acoustic vibration signal. By demodulating the response of intensity variation, the frequency of the applied acoustic vibration signal can be recovered. Such a DCF-based sensor with an intensity modulation could measure the acoustic vibration with a broadband frequency range from 1 Hz to 400 kHz and exhibits the maximum signal-to-noise ratio (SNR) of ?80.79 dB when the vibration frequency is 20 kHz. The obtained results show that the proposed DCF-based acoustic vibration sensor has a potential application in environmental assessment, structural damage detection, and health monitoring.
基金supported by the Natural Science Foundation of Shanghai(No.17ZR1434000)the China Postdoctoral Science Foundation(No.2016M601653)the National Natural Science Foundation of China(No.61775224)
文摘A large-mode-area neodymium-doped silicate photonic bandgap fiber was theoretically designed and experimen- tMly demonstrated. The relative index step between the high-index rods and the background glass was -0.5%, which is the lowest cladding index difference reported on rare-earth-doped all-solid photonic bandgap fibers to our knowledge. An output power of 3.6 W with a slope efficiency of 31- was obtained for a 100-cm-long fiber.
文摘Considering the wavelength characteristics of the pump high-power laser diode, a modified Fabry-Perot fiber laser resonator is designed. And a fiber laser with more than 10Watts output, near diffraction-limited and operating in the 1110nm region is developed.
基金supported by the National Natural Science Foundation of China(Nos.61575170 and 61605168)the State Scholarship Fund of China(No.201708130199)+1 种基金the Key Basic Research Program of Hebei Province(No.17961701D)"Xin Rui Gong Cheng" Talent Project of Yanshan University
文摘Based on the principle of Fabry-Perot (F-P) interference, a new type of optical fiber curvature sensor is presented,which is fabricated by single-mode fiber(SMF), ceramic tube and double-cladding fiber (DCF). And the curvature sensing properties are analyzed, and the double-peak method is used to demodulate the cavity length. The experimental results show that the F-P interference spectrum shifts toward long wavelengths with increasing the curvature. And the sensors are placed in different positions on the cantilever to get their different curvature sensitivities. Smaller initial cavity length gives greater sensor sensitivity. The best curvature sensitivity is achieved as 2 554.53 pm/m^(-1) in 0.71—1.18 m^(-1). By demodulating the length of the F-P cavity, the cavity length of sensor 4 is changed by 0.08 mm. Therefore, the sensor has some potential for measure the small displacement.