Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regen...Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the para-crine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These ifndings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair.展开更多
Patients treated with platinum-based chemotherapy frequently experience neurotoxic symptoms, which may lead to premature discontinuation of therapy. Despitediscontinuation of platinum drugs, these symptoms can persist...Patients treated with platinum-based chemotherapy frequently experience neurotoxic symptoms, which may lead to premature discontinuation of therapy. Despitediscontinuation of platinum drugs, these symptoms can persist over a long period of time. Cisplatin and oxaliplatin, among all platinum drugs, have significant neurotoxic potential. A distal dose-dependent symmetrical sensory neuropathy is the most common presentation of platinum neurotoxicity. DNA damage-induced apoptosis of dorsal root ganglion(DRG) neurons seems to be the principal cause of neurological symptoms. However, DRG injury alone cannot explain some unique symptoms such as cold-aggravated burning pain affecting distal extremities that is observed with oxaliplatin administration. In this article, we briefly reviewed potential mechanisms for the development of platinum drugs-associated neurological manifestations.展开更多
基金supported by the National Natural Science Foundation of China,No.31100696,31170946a grant from the National High Technology Research and Development Program of China(863 Program),No.2012AA020502+1 种基金a grant from the National Program on Key Basic Research Project of China(973 Program),No.2014CB542201a grant from Beijing Metropolis Beijing Nova Program,No.2011115
文摘Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the para-crine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These ifndings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair.
文摘Patients treated with platinum-based chemotherapy frequently experience neurotoxic symptoms, which may lead to premature discontinuation of therapy. Despitediscontinuation of platinum drugs, these symptoms can persist over a long period of time. Cisplatin and oxaliplatin, among all platinum drugs, have significant neurotoxic potential. A distal dose-dependent symmetrical sensory neuropathy is the most common presentation of platinum neurotoxicity. DNA damage-induced apoptosis of dorsal root ganglion(DRG) neurons seems to be the principal cause of neurological symptoms. However, DRG injury alone cannot explain some unique symptoms such as cold-aggravated burning pain affecting distal extremities that is observed with oxaliplatin administration. In this article, we briefly reviewed potential mechanisms for the development of platinum drugs-associated neurological manifestations.