In this study, an extension of the TREC (Tracking Radar Echo by Correlations) technique, named Tropical Cyclone (TC) circulation TREC (T-TREC), is developed to retrieve the winds of landfalling typhoons in China...In this study, an extension of the TREC (Tracking Radar Echo by Correlations) technique, named Tropical Cyclone (TC) circulation TREC (T-TREC), is developed to retrieve the winds of landfalling typhoons in China. The T-TREC analysis is performed on a polar grid centered at the TC center, using arc-shaped correlation cells and an arc-shaped search area. The search for the best correlation match is confined along the cyclonic direction with a limited search distance in the radial direction based on the cyclonic circulation characteristics of TCs in the Northern Hemisphere. The TC center is determined objectively using reflectivity data while the Doppler radar radial velocities are incorporated to estimate the search range and create a velocity correlation matrix as auxiliary constraints. The T-TREC was applied to the landfalling Typhoon Saomai (0608) observed by Chinese next generation Weather Surveillance Radar 1998 Doppler (CINRAD WSR-98D) on the southeast coast of China. The results show that the T-TREC has the ability to estimate the typhoon circulation with an average bias of 4 m s -1 . The incorporation of radial velocity data could distinctively improve wind retrievals for intense typhoons, especially by reducing the underestimation caused by fairly uniform reflectivity patterns in the vicinity of the eyewall and the outer rainband. A quantitative evaluation of the influence of typhoon center and cell size on the wind estimation demonstrates that the quality of the T-TREC retrieved wind circulation depends on the estimation of the typhoon center. A 4-km deviation of the TC center may result in a 10% increase in the retrieved wind error. The effect of cell size depends on the typhoon scale: better wind retrieval results can be obtained for a smaller typhoon.展开更多
Objective:To investigate the relationship between the temperature and the microvascular blood flow of the cerebral cortex, and the influence of electro-acupuncture (EA) on the cortical microcirculation. Methods: High ...Objective:To investigate the relationship between the temperature and the microvascular blood flow of the cerebral cortex, and the influence of electro-acupuncture (EA) on the cortical microcirculation. Methods: High temperature spots on the anterior ectosylvian and low temperature spots on the posterior suprasylvian on the cortical surface of 20 cats were identified using cortical infrared thermography (CIT); the blood flow in the microcirculation on these spots was measured with laser-Doppler flowmetry. EA was given at Zusanli (ST 36) and changes in the blood flow in the cerebral cortex microcirculation were detected. Results: 1) The mean temperatures on the high (34.83±0.24°C) and low (32.28±0.27°C) temperature spots were significantly different (P<0.001); this was indicative of a temperature difference on the cortical surface; 2) The average blood flow in the microcirculation of the high (266.8±19.2 PU) and low (140.8±9.9 PU) temperature spots was significantly different (P<0.001). 3) On the cortical high temperature spots, the mean blood flow in the microcirculation significantly increased from 266.8±86.8 PU before EA, to 422.5±47.4 PU following 5 minutes of EA (58.35%; P<0.01), and 431.8±52.8 PU 5 minutes after ceasing EA (61.84%; P<0.01). 4) On the low temperature spots, there were no significant differences in blood flow following 5 minutes of EA (146.3±11.5 PU), and 5 minutes after ceasing EA (140.5±11.6 PU), when compared with that before acupuncture (140.8±9.9 PU; P>0.9). Conclusion: The high temperature spots of the cortex are active functional regions of neurons with higher blood flow and a stronger response to EA. EA induces a significant increase in blood flow in the high temperature spots of the cortex.展开更多
The application of the single Doppler radar dataset analysis is usually confined to the assumption that the actual wind is linearly distributed or uniform locally.Following some dynamic features of convective weather,...The application of the single Doppler radar dataset analysis is usually confined to the assumption that the actual wind is linearly distributed or uniform locally.Following some dynamic features of convective weather,a conceptual model of moderate complexity is constructed,wherewith a horizontal wind perturbation field is retrieved directly from the single Doppler radar measurements.The numerical experiments are based on a 3-D cloud model-generated convective cell,whose radial velocity component is taken as the radar observations that are put into the closed equations based on the conceptual model to retrieve the horizontal wind perturbation field.After the initial field is properly treated,the retrieval equation is solved in terms of the 2-D FFT technique and the sensitivity to noise is examined. Finally,contrast analysis is done of the retrieved and the cloud model output wind fields,indicating the usefulness of the approach proposed in this paper.展开更多
The two-phase detection method for directional discrimination in laser Doppler measurements is discussed.The diffraction efficiency of a sin- gle period rectangular phase grating is analysed and a kind of back-scatter...The two-phase detection method for directional discrimination in laser Doppler measurements is discussed.The diffraction efficiency of a sin- gle period rectangular phase grating is analysed and a kind of back-scattered laser Doppler vibrometer without directional ambiguity using the single peri- od rectangular phase grating as the beam-combiner described.The principles of this kind of vibrometer are explained in detail,and some experimental re- sults are given.In this kind of vibrometer,the rectangular phase grating, without the zero diffracted order and even orders,is used to eliminate use- less stray light and to combine the useful signal light.Differential electronics is employed to reject signal noise.Therefore,the signal-to-noise ratio of Doppler signals and the measurement accuracy of the instrument are im- proved and the range of application is expanded.展开更多
基金Supported by the "973" National Key Basic Research Program of China under Grant No. 2009CB421502the National Natural Science Foundation of China under Grant Nos. 40505004, 40333025, and 40975011
文摘In this study, an extension of the TREC (Tracking Radar Echo by Correlations) technique, named Tropical Cyclone (TC) circulation TREC (T-TREC), is developed to retrieve the winds of landfalling typhoons in China. The T-TREC analysis is performed on a polar grid centered at the TC center, using arc-shaped correlation cells and an arc-shaped search area. The search for the best correlation match is confined along the cyclonic direction with a limited search distance in the radial direction based on the cyclonic circulation characteristics of TCs in the Northern Hemisphere. The TC center is determined objectively using reflectivity data while the Doppler radar radial velocities are incorporated to estimate the search range and create a velocity correlation matrix as auxiliary constraints. The T-TREC was applied to the landfalling Typhoon Saomai (0608) observed by Chinese next generation Weather Surveillance Radar 1998 Doppler (CINRAD WSR-98D) on the southeast coast of China. The results show that the T-TREC has the ability to estimate the typhoon circulation with an average bias of 4 m s -1 . The incorporation of radial velocity data could distinctively improve wind retrievals for intense typhoons, especially by reducing the underestimation caused by fairly uniform reflectivity patterns in the vicinity of the eyewall and the outer rainband. A quantitative evaluation of the influence of typhoon center and cell size on the wind estimation demonstrates that the quality of the T-TREC retrieved wind circulation depends on the estimation of the typhoon center. A 4-km deviation of the TC center may result in a 10% increase in the retrieved wind error. The effect of cell size depends on the typhoon scale: better wind retrieval results can be obtained for a smaller typhoon.
基金supported by a grant from the National Natural Science Fund of China (No. 39770925)Science Research Fund of The Ministry of Personnel for Excellent Returnees (1998)Beijing Key Laboratory Fund of The Science and Technology Commission of Beijing (951890600)
文摘Objective:To investigate the relationship between the temperature and the microvascular blood flow of the cerebral cortex, and the influence of electro-acupuncture (EA) on the cortical microcirculation. Methods: High temperature spots on the anterior ectosylvian and low temperature spots on the posterior suprasylvian on the cortical surface of 20 cats were identified using cortical infrared thermography (CIT); the blood flow in the microcirculation on these spots was measured with laser-Doppler flowmetry. EA was given at Zusanli (ST 36) and changes in the blood flow in the cerebral cortex microcirculation were detected. Results: 1) The mean temperatures on the high (34.83±0.24°C) and low (32.28±0.27°C) temperature spots were significantly different (P<0.001); this was indicative of a temperature difference on the cortical surface; 2) The average blood flow in the microcirculation of the high (266.8±19.2 PU) and low (140.8±9.9 PU) temperature spots was significantly different (P<0.001). 3) On the cortical high temperature spots, the mean blood flow in the microcirculation significantly increased from 266.8±86.8 PU before EA, to 422.5±47.4 PU following 5 minutes of EA (58.35%; P<0.01), and 431.8±52.8 PU 5 minutes after ceasing EA (61.84%; P<0.01). 4) On the low temperature spots, there were no significant differences in blood flow following 5 minutes of EA (146.3±11.5 PU), and 5 minutes after ceasing EA (140.5±11.6 PU), when compared with that before acupuncture (140.8±9.9 PU; P>0.9). Conclusion: The high temperature spots of the cortex are active functional regions of neurons with higher blood flow and a stronger response to EA. EA induces a significant increase in blood flow in the high temperature spots of the cortex.
基金The study is supported by the National Natural Science Foundation of China.
文摘The application of the single Doppler radar dataset analysis is usually confined to the assumption that the actual wind is linearly distributed or uniform locally.Following some dynamic features of convective weather,a conceptual model of moderate complexity is constructed,wherewith a horizontal wind perturbation field is retrieved directly from the single Doppler radar measurements.The numerical experiments are based on a 3-D cloud model-generated convective cell,whose radial velocity component is taken as the radar observations that are put into the closed equations based on the conceptual model to retrieve the horizontal wind perturbation field.After the initial field is properly treated,the retrieval equation is solved in terms of the 2-D FFT technique and the sensitivity to noise is examined. Finally,contrast analysis is done of the retrieved and the cloud model output wind fields,indicating the usefulness of the approach proposed in this paper.
文摘The two-phase detection method for directional discrimination in laser Doppler measurements is discussed.The diffraction efficiency of a sin- gle period rectangular phase grating is analysed and a kind of back-scattered laser Doppler vibrometer without directional ambiguity using the single peri- od rectangular phase grating as the beam-combiner described.The principles of this kind of vibrometer are explained in detail,and some experimental re- sults are given.In this kind of vibrometer,the rectangular phase grating, without the zero diffracted order and even orders,is used to eliminate use- less stray light and to combine the useful signal light.Differential electronics is employed to reject signal noise.Therefore,the signal-to-noise ratio of Doppler signals and the measurement accuracy of the instrument are im- proved and the range of application is expanded.