Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The p...Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The physicochemical properties of the Sb-SnO2 coating were markedly influenced by different amounts of Sb dopant. The electrodes, which contained 5% Sb dopant in the coating, presented a much more homogenous surface and much smaller mud-cracks, compared with Ti/Sb-SnO2 electrodes containing 10% or 15% Sb dopant, which exibited larger mud cracks and pores on the surface. However, the main microstructure remained unchanged with the addition of the Sb dopant. No new crystal phase was observed by X-ray diffraction (XRD). The electrochemical oxidation of 4-chlorophenol on the Ti/SnO2 electrode with 5% Sb dopant was inclined to electrochemical combustion; while for those containing more Sb dopant, intermediate species were accumulated. The electrodes with 5% Sb dopant showed the highest efficiency in the bulk electrolysis of 4-chlorophenol at a current density of 20 mA/cm^2 for 180 min; and the removal rates of 4-chlorophenol and COD were 51.0% and 48.9%, respectively.展开更多
二氧化锆超微粉末的制备方法按所用原料的形态不同分为固相法、液相法和气相法。其中液相法因其制备形式的多样性、工艺简单,可控化学组成和粒径分布等特点而得到广泛应用。本文详细地综述了液相法制备 Z r O 超微粉末的研究进展,特别...二氧化锆超微粉末的制备方法按所用原料的形态不同分为固相法、液相法和气相法。其中液相法因其制备形式的多样性、工艺简单,可控化学组成和粒径分布等特点而得到广泛应用。本文详细地综述了液相法制备 Z r O 超微粉末的研究进展,特别就目前研究比较多的水热法给予了重点阐述,同时讨论了稳定剂的种类,粉 2体团聚的控制方法及水溶性高分子的种类。展开更多
Impurity doping is an effective approach to tuning the optoelectronic performance of host materials by imparting extrinsic electronic channels.Herein,a family of lanthanide(Ln^(3+))ions was successfully incorporated i...Impurity doping is an effective approach to tuning the optoelectronic performance of host materials by imparting extrinsic electronic channels.Herein,a family of lanthanide(Ln^(3+))ions was successfully incorporated into a Bi:Cs_(2)AgInCl_(6) lead-free double-perovskite(DP)semiconductor,expanding the spectral range from visible(Vis)to near-infrared(NIR)and improving the photoluminescence quantum yield(PLQY).After multidoping with Nd,Yb,Er and Tm,Bi/Ln:Cs_(2)AgInCl_(6) yielded an ultrabroadband continuous emission spectrum with a full width at half-maximum of~365 nm originating from intrinsic self-trapped exciton recombination and abundant 4f-4f transitions of the Ln^(3+)dopants.Steady-state and transient-state spectra were used to ascertain the energy transfer and emissive processes.To avoid adverse energy interactions between the various Ln^(3+)ions in a single DP host,a heterogeneous architecture was designed to spatially confine different Ln^(3+)dopants via a“DP-in-glass composite”(DiG)structure.This bottom-up strategy endowed the prepared Ln^(3+)-doped DIG with a high PLQY of 40%(nearly three times as high as that of the multidoped DP)and superior long-term stability.Finally,a compact Vis-NIR ultrabroadband(400~2000 nm)light source was easily fabricated by coupling the DiG with a commercial UV LED chip,and this light source has promising applications in nondestructive spectroscopic analyses and multifunctional lighting.展开更多
基金Project supported by the Institute of Environmental Engineering,Peking University and China Postdoctoral Science Foundation(No.2005037032)
文摘Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The physicochemical properties of the Sb-SnO2 coating were markedly influenced by different amounts of Sb dopant. The electrodes, which contained 5% Sb dopant in the coating, presented a much more homogenous surface and much smaller mud-cracks, compared with Ti/Sb-SnO2 electrodes containing 10% or 15% Sb dopant, which exibited larger mud cracks and pores on the surface. However, the main microstructure remained unchanged with the addition of the Sb dopant. No new crystal phase was observed by X-ray diffraction (XRD). The electrochemical oxidation of 4-chlorophenol on the Ti/SnO2 electrode with 5% Sb dopant was inclined to electrochemical combustion; while for those containing more Sb dopant, intermediate species were accumulated. The electrodes with 5% Sb dopant showed the highest efficiency in the bulk electrolysis of 4-chlorophenol at a current density of 20 mA/cm^2 for 180 min; and the removal rates of 4-chlorophenol and COD were 51.0% and 48.9%, respectively.
文摘二氧化锆超微粉末的制备方法按所用原料的形态不同分为固相法、液相法和气相法。其中液相法因其制备形式的多样性、工艺简单,可控化学组成和粒径分布等特点而得到广泛应用。本文详细地综述了液相法制备 Z r O 超微粉末的研究进展,特别就目前研究比较多的水热法给予了重点阐述,同时讨论了稳定剂的种类,粉 2体团聚的控制方法及水溶性高分子的种类。
基金This research was supported by the National Natural Science Foundation of China(51972060,U1805252,and 22135008)the Fujian Science&Technology Innovation Laboratory for Optoelectronic Information(2021ZZ126)the Natural Science Foundation of Fujian Province(2020J02017,2021L3024).
文摘Impurity doping is an effective approach to tuning the optoelectronic performance of host materials by imparting extrinsic electronic channels.Herein,a family of lanthanide(Ln^(3+))ions was successfully incorporated into a Bi:Cs_(2)AgInCl_(6) lead-free double-perovskite(DP)semiconductor,expanding the spectral range from visible(Vis)to near-infrared(NIR)and improving the photoluminescence quantum yield(PLQY).After multidoping with Nd,Yb,Er and Tm,Bi/Ln:Cs_(2)AgInCl_(6) yielded an ultrabroadband continuous emission spectrum with a full width at half-maximum of~365 nm originating from intrinsic self-trapped exciton recombination and abundant 4f-4f transitions of the Ln^(3+)dopants.Steady-state and transient-state spectra were used to ascertain the energy transfer and emissive processes.To avoid adverse energy interactions between the various Ln^(3+)ions in a single DP host,a heterogeneous architecture was designed to spatially confine different Ln^(3+)dopants via a“DP-in-glass composite”(DiG)structure.This bottom-up strategy endowed the prepared Ln^(3+)-doped DIG with a high PLQY of 40%(nearly three times as high as that of the multidoped DP)and superior long-term stability.Finally,a compact Vis-NIR ultrabroadband(400~2000 nm)light source was easily fabricated by coupling the DiG with a commercial UV LED chip,and this light source has promising applications in nondestructive spectroscopic analyses and multifunctional lighting.