为了满足采用高峰均比调制信号的未来无线通信系统中功率放大器高效和宽带的设计需求,研究了一种改进的宽带Doherty功率放大器设计方法.为了实现Doherty在功率回退和饱和输出时的阻抗变换,提出了一种双阻抗匹配网络设计方法来仿真设计...为了满足采用高峰均比调制信号的未来无线通信系统中功率放大器高效和宽带的设计需求,研究了一种改进的宽带Doherty功率放大器设计方法.为了实现Doherty在功率回退和饱和输出时的阻抗变换,提出了一种双阻抗匹配网络设计方法来仿真设计主路和辅路输出匹配网络,从而简化了负载调制网络,展宽了带宽.实现并测试了一个2.30~2.80 GHz宽带Doherty功率放大器(DPA),对所提出方法的有效性进行了验证.结果表明:所设计的宽带DPA在工作带宽内增益波动小于2 d B,饱和功率大于43.5 d Bm,饱和时的峰值效率为66%~71%,6 d B回退时的效率为48%~59%,可满足未来无线通信系统中对高峰均比调制信号高效率放大的要求.展开更多
In this paper,a hybrid integrated broadband Doherty power amplifier(DPA)based on a multi-chip module(MCM),whose active devices are fabricated using the gallium nitride(GaN)process and whose passive circuits are fabric...In this paper,a hybrid integrated broadband Doherty power amplifier(DPA)based on a multi-chip module(MCM),whose active devices are fabricated using the gallium nitride(GaN)process and whose passive circuits are fabricated using the gallium arsenide(GaAs)integrated passive device(IPD)process,is proposed for 5G massive multiple-input multiple-output(MIMO)application.An inverted DPA structure with a low-Q output network is proposed to achieve better bandwidth performance,and a single-driver architecture is adopted for a chip with high gain and small area.The proposed DPA has a bandwidth of 4.4-5.0 GHz that can achieve a saturation of more than 45.0 dBm.The gain compression from 37 dBm to saturation power is less than 4 dB,and the average power-added efficiency(PAE)is 36.3%with an 8.5 dB peak-to-average power ratio(PAPR)in 4.5-5.0 GHz.The measured adjacent channel power ratio(ACPR)is better than50 dBc after digital predistortion(DPD),exhibiting satisfactory linearity.展开更多
In this paper,a simple adaptive power dividing function for the design of a dual-input Doherty power amplifier(DPA)is presented.In the presented approaches,the signal separation function(SSF)at different frequency poi...In this paper,a simple adaptive power dividing function for the design of a dual-input Doherty power amplifier(DPA)is presented.In the presented approaches,the signal separation function(SSF)at different frequency points can be characterized by a polynomial.And in the practical test,the coefficients of SSF can be determined by measuring a small number of data points of input power.Same as other dualinput DPAs,the proposed approach can also achieve high output power and back-off efficiency in a broadband operation band by adjusting the power distribution ratio flexibly.Finally,a 1.5-2.5 GHz highefficiency dual-input Doherty power amplifier is implemented according to this approach.The test results show that the peak power is 48.6-49.7d Bm,and the 6-d B back-off efficiency is 51.0-67.0%,and the saturation efficiency is 52.4-74.6%.The digital predistortion correction is carried out at the frequency points of 1.8/2.1GHz,and the adjacent channel power ratio is lower than-54.5d Bc.Simulation and experiment results can verify the effectiveness and correctness of the proposed method.展开更多
采用Doherty技术设计并实现了一款应用于无线通信基站的S波段高效率功率放大器,通过非对称功率输入的方式使得整个功放在更宽的功率范围内获得高效率。设计中采用了安捷伦公司的先进设计系统软件(advanced design system,ADS),选取恩智...采用Doherty技术设计并实现了一款应用于无线通信基站的S波段高效率功率放大器,通过非对称功率输入的方式使得整个功放在更宽的功率范围内获得高效率。设计中采用了安捷伦公司的先进设计系统软件(advanced design system,ADS),选取恩智浦公司型号为MRF7S21080H与MRF8S21100H的横向扩散金属氧化物半导体(laterally diffused metal oxide semiconductor,LDMOS)功放晶体管,两款晶体管的工作频率均为2.14~2.17 GHz。经过电路仿真与实物调试,最终设计并实现了功率回退达到7 d B的功率放大器,其增益为13.5 d B,并且在7 d B功率回退点上效率达到35%,峰值功率效率达到42%。相比其他功率放大器,该放大器具有较大的功率回退范围与更高的效率。结果证明,通过不对称输入方式所设计的Doherty功率放大器可以获得更宽的功率回退范围。展开更多
This paper presents a brief overview of several promising design technologies for high efficiency silicon-based radio frequency (RF) power amplifiers (PAs) as well as the use of these technologies in mobile broadb...This paper presents a brief overview of several promising design technologies for high efficiency silicon-based radio frequency (RF) power amplifiers (PAs) as well as the use of these technologies in mobile broadband wireless communications. Four important aspects of PA design are addressed in this paper. First, we look at class-E PA design equations and provide an example of a class-E PA that achieves efficiency of 65-70% at 2.4 GHz. Then, we discuss state-of-the-art envelope tracking (ET) design for monolithic wideband RF mobile transmitter applications. A brief overview of Doherty PA design for the next-generation wireless handset applications is then given. Towards the end of the paper, we discuss an inherently broadband and highly efficient class-J PA design targeting future multi-band multi-standard wireless communication protocols.展开更多
文摘为了满足采用高峰均比调制信号的未来无线通信系统中功率放大器高效和宽带的设计需求,研究了一种改进的宽带Doherty功率放大器设计方法.为了实现Doherty在功率回退和饱和输出时的阻抗变换,提出了一种双阻抗匹配网络设计方法来仿真设计主路和辅路输出匹配网络,从而简化了负载调制网络,展宽了带宽.实现并测试了一个2.30~2.80 GHz宽带Doherty功率放大器(DPA),对所提出方法的有效性进行了验证.结果表明:所设计的宽带DPA在工作带宽内增益波动小于2 d B,饱和功率大于43.5 d Bm,饱和时的峰值效率为66%~71%,6 d B回退时的效率为48%~59%,可满足未来无线通信系统中对高峰均比调制信号高效率放大的要求.
基金supported in part by the National Key Research and Development Program of China(2021YFA0716601)the National Science Fund(62225111).
文摘In this paper,a hybrid integrated broadband Doherty power amplifier(DPA)based on a multi-chip module(MCM),whose active devices are fabricated using the gallium nitride(GaN)process and whose passive circuits are fabricated using the gallium arsenide(GaAs)integrated passive device(IPD)process,is proposed for 5G massive multiple-input multiple-output(MIMO)application.An inverted DPA structure with a low-Q output network is proposed to achieve better bandwidth performance,and a single-driver architecture is adopted for a chip with high gain and small area.The proposed DPA has a bandwidth of 4.4-5.0 GHz that can achieve a saturation of more than 45.0 dBm.The gain compression from 37 dBm to saturation power is less than 4 dB,and the average power-added efficiency(PAE)is 36.3%with an 8.5 dB peak-to-average power ratio(PAPR)in 4.5-5.0 GHz.The measured adjacent channel power ratio(ACPR)is better than50 dBc after digital predistortion(DPD),exhibiting satisfactory linearity.
基金supported by National Natural Science Foundation of China(No.62001061)。
文摘In this paper,a simple adaptive power dividing function for the design of a dual-input Doherty power amplifier(DPA)is presented.In the presented approaches,the signal separation function(SSF)at different frequency points can be characterized by a polynomial.And in the practical test,the coefficients of SSF can be determined by measuring a small number of data points of input power.Same as other dualinput DPAs,the proposed approach can also achieve high output power and back-off efficiency in a broadband operation band by adjusting the power distribution ratio flexibly.Finally,a 1.5-2.5 GHz highefficiency dual-input Doherty power amplifier is implemented according to this approach.The test results show that the peak power is 48.6-49.7d Bm,and the 6-d B back-off efficiency is 51.0-67.0%,and the saturation efficiency is 52.4-74.6%.The digital predistortion correction is carried out at the frequency points of 1.8/2.1GHz,and the adjacent channel power ratio is lower than-54.5d Bc.Simulation and experiment results can verify the effectiveness and correctness of the proposed method.
文摘采用Doherty技术设计并实现了一款应用于无线通信基站的S波段高效率功率放大器,通过非对称功率输入的方式使得整个功放在更宽的功率范围内获得高效率。设计中采用了安捷伦公司的先进设计系统软件(advanced design system,ADS),选取恩智浦公司型号为MRF7S21080H与MRF8S21100H的横向扩散金属氧化物半导体(laterally diffused metal oxide semiconductor,LDMOS)功放晶体管,两款晶体管的工作频率均为2.14~2.17 GHz。经过电路仿真与实物调试,最终设计并实现了功率回退达到7 d B的功率放大器,其增益为13.5 d B,并且在7 d B功率回退点上效率达到35%,峰值功率效率达到42%。相比其他功率放大器,该放大器具有较大的功率回退范围与更高的效率。结果证明,通过不对称输入方式所设计的Doherty功率放大器可以获得更宽的功率回退范围。
文摘This paper presents a brief overview of several promising design technologies for high efficiency silicon-based radio frequency (RF) power amplifiers (PAs) as well as the use of these technologies in mobile broadband wireless communications. Four important aspects of PA design are addressed in this paper. First, we look at class-E PA design equations and provide an example of a class-E PA that achieves efficiency of 65-70% at 2.4 GHz. Then, we discuss state-of-the-art envelope tracking (ET) design for monolithic wideband RF mobile transmitter applications. A brief overview of Doherty PA design for the next-generation wireless handset applications is then given. Towards the end of the paper, we discuss an inherently broadband and highly efficient class-J PA design targeting future multi-band multi-standard wireless communication protocols.