With the ever-growing requirement for higher data rates, terminals supporting multiple-input multiple-output (MIMO) technologies are being developed for next-generation. As for wireless device manufacturers, a radio p...With the ever-growing requirement for higher data rates, terminals supporting multiple-input multiple-output (MIMO) technologies are being developed for next-generation. As for wireless device manufacturers, a radio performance evaluation of multi-antenna terminals in desired environments is mandatory before product release. This paper discusses the Over the Air (OTA) performance evaluation of antenna diversity systems in Indoor and Outdoor multi-path propagation channel models inside anechoic chamber, in terms of correlation coefficients and diversity gain (DG). These channel models have been emulated in terms of angles of arrivals (AoA) and cross-polarization ratio (XPR) with Rayleigh fading. For this purpose, SATIMO SG24 measurement system has been used. However, the actual configuration of this system is not able to emulate desired realistic environments. Therefore, an innovative methodology based on the SG24 probes control has been developed. The obtained results in simulations and measurements have shown a good agreement.展开更多
As antennas are inherently included recommended in Over-The-Air (OTA) testing, it is important to also consider realistic channel models for the multiple-input multiple-output (MIMO) device performance evaluation. Thi...As antennas are inherently included recommended in Over-The-Air (OTA) testing, it is important to also consider realistic channel models for the multiple-input multiple-output (MIMO) device performance evaluation. This paper aims to emulate realistic multi-Path propagation channels in terms of angles of arrivals (AoA) and cross-polarization ratio (XPR) with Rayleigh fading, inside an anechoic chamber, for antenna diversity measurements. In this purpose, a practical multi-probe anechoic chamber measurement system (MPAC) with 24 probe antennas (SATIMO SG24) has been used. However, the actual configuration of this system is not able to reproduce realistic channels. Therefore, a new method based on the control of the SG24 probes has been developed. At first time, this method has been validated numerically through the comparison of simulated and analytical AoA probability density distributions. At the second time, the performance of an antenna diversity system inside the SG24 has been performed in terms of the correlation coefficient and diversity gain (DG) using an antenna reference system. Simulated and measurements results have shown a good agreement.展开更多
文摘With the ever-growing requirement for higher data rates, terminals supporting multiple-input multiple-output (MIMO) technologies are being developed for next-generation. As for wireless device manufacturers, a radio performance evaluation of multi-antenna terminals in desired environments is mandatory before product release. This paper discusses the Over the Air (OTA) performance evaluation of antenna diversity systems in Indoor and Outdoor multi-path propagation channel models inside anechoic chamber, in terms of correlation coefficients and diversity gain (DG). These channel models have been emulated in terms of angles of arrivals (AoA) and cross-polarization ratio (XPR) with Rayleigh fading. For this purpose, SATIMO SG24 measurement system has been used. However, the actual configuration of this system is not able to emulate desired realistic environments. Therefore, an innovative methodology based on the SG24 probes control has been developed. The obtained results in simulations and measurements have shown a good agreement.
文摘As antennas are inherently included recommended in Over-The-Air (OTA) testing, it is important to also consider realistic channel models for the multiple-input multiple-output (MIMO) device performance evaluation. This paper aims to emulate realistic multi-Path propagation channels in terms of angles of arrivals (AoA) and cross-polarization ratio (XPR) with Rayleigh fading, inside an anechoic chamber, for antenna diversity measurements. In this purpose, a practical multi-probe anechoic chamber measurement system (MPAC) with 24 probe antennas (SATIMO SG24) has been used. However, the actual configuration of this system is not able to reproduce realistic channels. Therefore, a new method based on the control of the SG24 probes has been developed. At first time, this method has been validated numerically through the comparison of simulated and analytical AoA probability density distributions. At the second time, the performance of an antenna diversity system inside the SG24 has been performed in terms of the correlation coefficient and diversity gain (DG) using an antenna reference system. Simulated and measurements results have shown a good agreement.