A synchronous control of relative attitude and position is required in separated ultraquiet spacecraft, such as drag-free, disturbance-free, and distributed spacecraft. Thus, a twistorbased synchronous sliding mode co...A synchronous control of relative attitude and position is required in separated ultraquiet spacecraft, such as drag-free, disturbance-free, and distributed spacecraft. Thus, a twistorbased synchronous sliding mode control is investigated in this paper to solve the control problem of relative attitude and position among separated spacecraft modules. The twistor-based control design and the stability proof are implemented using the Modified Rodrigues Parameter(MRP).To evaluate the effectiveness of the proposed control method, this paper presents a case study of separated spacecraft flying control considering the mass uncertainty and external disturbances. In addition, a simulation study of the Proportional-Derivative(PD) control is also presented for comparison. The results indicate that the twistor-based sliding mode controller can ensure global asymptotic stability. The states converge fast with ultra-precision and ultra-stability in both the attitude and position. Moreover, the proposed twistor-based sliding mode control system is robust to the mass uncertainty and external disturbances.展开更多
This paper considers a fault-tolerant control and vibration suppression problem of flexible spacecraft.The attitude dynamics is modeled by an interconnected system,in which the rigid part and the flexible part are cou...This paper considers a fault-tolerant control and vibration suppression problem of flexible spacecraft.The attitude dynamics is modeled by an interconnected system,in which the rigid part and the flexible part are coupled with each other.Such a model allows us to use the interconnected system approach to analyze the flexible spacecraft.Both distributed and decentralized observer-based fault-tolerant control schemes are developed,under which the closed-loop stability of flexible spacecraft can be ensured by using the cycle-small-gain theorem.Compared with the traditional method,this paper considers the faults occurred not only in the rigid parts,but also in the flexible parts.In addition,the application of the interconnected system approach simplifies the system model of flexible spacecraft,thereby the difficulty of theoretical analysis and engineering practice of fault-tolerant control of flexible spacecraft are greatly reduced.Simulation results show the effectiveness of the proposed methods and the comparison of different fault-tolerant control approach.展开更多
A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process u...A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process under a series of complex constraints,which is important for enhancing the matching between resources and requirements.A complex algorithm is not available because that the LEO on-board resources is limi-ted.The proposed genetic algorithm(GA)based on two-dimen-sional individual model and uncorrelated single paternal inheri-tance method is designed to support distributed computation to enhance the feasibility of on-board application.A distributed system composed of eight embedded devices is built to verify the algorithm.A typical scenario is built in the system to evalu-ate the resource allocation process,algorithm mathematical model,trigger strategy,and distributed computation architec-ture.According to the simulation and measurement results,the proposed algorithm can provide an allocation result for more than 1500 tasks in 14 s and the success rate is more than 91%in a typical scene.The response time is decreased by 40%com-pared with the conditional GA.展开更多
This paper presents a class of non-model-based position controllers for a kind of flexible spacecraft. With the controllers, one can achieve not only the closed-loop stability of the original distributed parameter sys...This paper presents a class of non-model-based position controllers for a kind of flexible spacecraft. With the controllers, one can achieve not only the closed-loop stability of the original distributed parameter system, but also the asymptotic stability of the truncated system, which is obtained through representing the deflection of the appendage by an arbitrary finite number of flexible modes. The system dynamics are not explicitly involved in the controller design and stability proof. Instead, only a very basic system energy relationship of the flexible spacecraft is utilized. The controllers possess several remarkable advantages over the traditional model-based ones. Numerical simulations are carried out on a kind of spacecraft with one flexible appendage and satisfactory results are obtained.展开更多
To meet the requirements and functions of spacecraft dynamic simulation and emulation according to different flight periods, the realization of real time system with different configurations, control of the developmen...To meet the requirements and functions of spacecraft dynamic simulation and emulation according to different flight periods, the realization of real time system with different configurations, control of the development cycle and examples of application are presented in detail. On the basis of the satellite dynamic simulation technology, distributed network integrated with the component testing platforms is used to construct a multi-level bus network system. The system takes into full consideration the configuration flexibility, real time characteristics and extendibility. Test results show that both the software algorithm and the hardware integration of the system are correct and effective. The system could be used not only as the effective tool of designing and developing the components and whole assembly of satellites and missiles, but also for the dynamic simulation and emulation in all phases of a spacecraft development cycle.展开更多
This paper investigates the problem of Spacecraft Formation-Containment Flying Control(SFCFC)when the desired translational velocity is time-varying.In SFCFC problem,there are multiple leader spacecraft and multiple f...This paper investigates the problem of Spacecraft Formation-Containment Flying Control(SFCFC)when the desired translational velocity is time-varying.In SFCFC problem,there are multiple leader spacecraft and multiple follower spacecraft and SFCFC can be divided into leader spacecraft’s formation control and follower spacecraft’s containment control.First,under the condition that only a part of leader spacecraft can have access to the desired time-varying translational velocity,a velocity estimator is designed for each leader spacecraft.Secondly,based on the estimated translational velocity,a distributed formation control algorithm is designed for leader spacecraft to achieve the desired formation and move with the desired translational velocity simultaneously.Then,to ensure all follower spacecraft converge to the convex hull formed by the leader spacecraft,a distributed containment control algorithm is designed for follower spacecraft.Moreover,to reduce the dependence of the designed control algorithms on the graph information and increase system robustness,the control gains are changing adaptively and the parametric uncertainties are handled,respectively.Finally,simulation results are provided to illustrate the effectiveness of the theoretical results.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51675430,11402044,and U1537213)
文摘A synchronous control of relative attitude and position is required in separated ultraquiet spacecraft, such as drag-free, disturbance-free, and distributed spacecraft. Thus, a twistorbased synchronous sliding mode control is investigated in this paper to solve the control problem of relative attitude and position among separated spacecraft modules. The twistor-based control design and the stability proof are implemented using the Modified Rodrigues Parameter(MRP).To evaluate the effectiveness of the proposed control method, this paper presents a case study of separated spacecraft flying control considering the mass uncertainty and external disturbances. In addition, a simulation study of the Proportional-Derivative(PD) control is also presented for comparison. The results indicate that the twistor-based sliding mode controller can ensure global asymptotic stability. The states converge fast with ultra-precision and ultra-stability in both the attitude and position. Moreover, the proposed twistor-based sliding mode control system is robust to the mass uncertainty and external disturbances.
基金supported by National Natural Science Foundation of China(Nos.61622304,61773201)Natural Science Foundation of Jiangsu Province,China(No.BK20160035)Fundamental Research Funds for the Central Universities,China(No.NE2015002)。
文摘This paper considers a fault-tolerant control and vibration suppression problem of flexible spacecraft.The attitude dynamics is modeled by an interconnected system,in which the rigid part and the flexible part are coupled with each other.Such a model allows us to use the interconnected system approach to analyze the flexible spacecraft.Both distributed and decentralized observer-based fault-tolerant control schemes are developed,under which the closed-loop stability of flexible spacecraft can be ensured by using the cycle-small-gain theorem.Compared with the traditional method,this paper considers the faults occurred not only in the rigid parts,but also in the flexible parts.In addition,the application of the interconnected system approach simplifies the system model of flexible spacecraft,thereby the difficulty of theoretical analysis and engineering practice of fault-tolerant control of flexible spacecraft are greatly reduced.Simulation results show the effectiveness of the proposed methods and the comparison of different fault-tolerant control approach.
基金This work was supported by the National Key Research and Development Program of China(2021YFB2900603)the National Natural Science Foundation of China(61831008).
文摘A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process under a series of complex constraints,which is important for enhancing the matching between resources and requirements.A complex algorithm is not available because that the LEO on-board resources is limi-ted.The proposed genetic algorithm(GA)based on two-dimen-sional individual model and uncorrelated single paternal inheri-tance method is designed to support distributed computation to enhance the feasibility of on-board application.A distributed system composed of eight embedded devices is built to verify the algorithm.A typical scenario is built in the system to evalu-ate the resource allocation process,algorithm mathematical model,trigger strategy,and distributed computation architec-ture.According to the simulation and measurement results,the proposed algorithm can provide an allocation result for more than 1500 tasks in 14 s and the success rate is more than 91%in a typical scene.The response time is decreased by 40%com-pared with the conditional GA.
文摘This paper presents a class of non-model-based position controllers for a kind of flexible spacecraft. With the controllers, one can achieve not only the closed-loop stability of the original distributed parameter system, but also the asymptotic stability of the truncated system, which is obtained through representing the deflection of the appendage by an arbitrary finite number of flexible modes. The system dynamics are not explicitly involved in the controller design and stability proof. Instead, only a very basic system energy relationship of the flexible spacecraft is utilized. The controllers possess several remarkable advantages over the traditional model-based ones. Numerical simulations are carried out on a kind of spacecraft with one flexible appendage and satisfactory results are obtained.
文摘To meet the requirements and functions of spacecraft dynamic simulation and emulation according to different flight periods, the realization of real time system with different configurations, control of the development cycle and examples of application are presented in detail. On the basis of the satellite dynamic simulation technology, distributed network integrated with the component testing platforms is used to construct a multi-level bus network system. The system takes into full consideration the configuration flexibility, real time characteristics and extendibility. Test results show that both the software algorithm and the hardware integration of the system are correct and effective. The system could be used not only as the effective tool of designing and developing the components and whole assembly of satellites and missiles, but also for the dynamic simulation and emulation in all phases of a spacecraft development cycle.
基金supported by the National Natural Science Foundation of China(Nos.61876050,61673135,61603114).
文摘This paper investigates the problem of Spacecraft Formation-Containment Flying Control(SFCFC)when the desired translational velocity is time-varying.In SFCFC problem,there are multiple leader spacecraft and multiple follower spacecraft and SFCFC can be divided into leader spacecraft’s formation control and follower spacecraft’s containment control.First,under the condition that only a part of leader spacecraft can have access to the desired time-varying translational velocity,a velocity estimator is designed for each leader spacecraft.Secondly,based on the estimated translational velocity,a distributed formation control algorithm is designed for leader spacecraft to achieve the desired formation and move with the desired translational velocity simultaneously.Then,to ensure all follower spacecraft converge to the convex hull formed by the leader spacecraft,a distributed containment control algorithm is designed for follower spacecraft.Moreover,to reduce the dependence of the designed control algorithms on the graph information and increase system robustness,the control gains are changing adaptively and the parametric uncertainties are handled,respectively.Finally,simulation results are provided to illustrate the effectiveness of the theoretical results.