在双碳战略和相关能源政策背景下,为平抑规模化接入分布式能源的潮流随机波动,分布式储能将在配电网逐步推广应用。建立适应随机序贯决策的分布式储能规划模型,将电压幅值、储能动作频次和用电成本作为即时回报优化分布式储能响应,基于...在双碳战略和相关能源政策背景下,为平抑规模化接入分布式能源的潮流随机波动,分布式储能将在配电网逐步推广应用。建立适应随机序贯决策的分布式储能规划模型,将电压幅值、储能动作频次和用电成本作为即时回报优化分布式储能响应,基于优化的分布式储能组合序贯动作进行储能参数配置;基于竞争深度Q网络(dueling deep Q network,DDQN)的深度增强学习方法开展自学习优化,并以全寿命周期投资收益最大化确定分布式储能布点与配置方案。最后在IEEE33节点算例系统接入分布式光伏和储能的条件下,论证了方法的合理有效性。展开更多
低轨遥感星座任务规划是一个复杂的多目标优化问题,目前基于深度强化学习的卫星任务规划研究存在试验数据星座规模小、优化目标单一、任务重复安排或模型适应性差等问题.针对上述问题,提出CON_DQN(Contract network and Deep Q Network...低轨遥感星座任务规划是一个复杂的多目标优化问题,目前基于深度强化学习的卫星任务规划研究存在试验数据星座规模小、优化目标单一、任务重复安排或模型适应性差等问题.针对上述问题,提出CON_DQN(Contract network and Deep Q Network)算法,采用主从星在轨分布式协商机制,从星基于规划决策,主星基于深度强化学习算法决策,从任务优先级、资源代价和负载均衡等方面进行多目标优化,实现面向即时响应的卫星在轨分布式协商智能任务规划.针对用户需求高频动态到达重点观测区域的场景,进行百星级星座不同规模任务集的仿真实验,结果表明本文所提算法的响应速度较快且能达到较高的任务收益.展开更多
文摘在双碳战略和相关能源政策背景下,为平抑规模化接入分布式能源的潮流随机波动,分布式储能将在配电网逐步推广应用。建立适应随机序贯决策的分布式储能规划模型,将电压幅值、储能动作频次和用电成本作为即时回报优化分布式储能响应,基于优化的分布式储能组合序贯动作进行储能参数配置;基于竞争深度Q网络(dueling deep Q network,DDQN)的深度增强学习方法开展自学习优化,并以全寿命周期投资收益最大化确定分布式储能布点与配置方案。最后在IEEE33节点算例系统接入分布式光伏和储能的条件下,论证了方法的合理有效性。
文摘低轨遥感星座任务规划是一个复杂的多目标优化问题,目前基于深度强化学习的卫星任务规划研究存在试验数据星座规模小、优化目标单一、任务重复安排或模型适应性差等问题.针对上述问题,提出CON_DQN(Contract network and Deep Q Network)算法,采用主从星在轨分布式协商机制,从星基于规划决策,主星基于深度强化学习算法决策,从任务优先级、资源代价和负载均衡等方面进行多目标优化,实现面向即时响应的卫星在轨分布式协商智能任务规划.针对用户需求高频动态到达重点观测区域的场景,进行百星级星座不同规模任务集的仿真实验,结果表明本文所提算法的响应速度较快且能达到较高的任务收益.