SDN(Software Defined Network,软件定义网络)是一种新兴的网络架构,它的控制与转发分离架构为网络管理带来了极大的便利性和灵活性,但同时也带来新的安全威胁和挑战。攻击者通过对SDN的集中式控制器进行DDoS(Distributed Denial of Ser...SDN(Software Defined Network,软件定义网络)是一种新兴的网络架构,它的控制与转发分离架构为网络管理带来了极大的便利性和灵活性,但同时也带来新的安全威胁和挑战。攻击者通过对SDN的集中式控制器进行DDoS(Distributed Denial of Service,分布式拒绝服务)攻击,会使信息不可达,造成网络瘫痪。为了检测DDoS攻击,提出了一种基于C4.5决策树的检测方法:通过提取交换机流表项信息,使用C4.5决策树算法训练数据集生成决策树对流量进行分类,实现DDoS攻击的检测,最后通过实验证明了该方法有更高的检测成功率,更低的误警率与较少的检测时间。展开更多
The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communicati...The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communication network shares information about status of its several integrated IEDs (Intelligent Electronic Devices). However, the IEDs connected throughout the Smart Grid, open opportunities for attackers to interfere with the communications and utilities resources or take clients’ private data. This development has introduced new cyber-security challenges for the Smart Grid and is a very concerning issue because of emerging cyber-threats and security incidents that have occurred recently all over the world. The purpose of this research is to detect and mitigate Distributed Denial of Service [DDoS] with application to the Electrical Smart Grid System by deploying an optimized Stealthwatch Secure Network analytics tool. In this paper, the DDoS attack in the Smart Grid communication networks was modeled using Stealthwatch tool. The simulated network consisted of Secure Network Analytic tools virtual machines (VMs), electrical Grid network communication topology, attackers and Target VMs. Finally, the experiments and simulations were performed, and the research results showed that Stealthwatch analytic tool is very effective in detecting and mitigating DDoS attacks in the Smart Grid System without causing any blackout or shutdown of any internal systems as compared to other tools such as GNS3, NeSSi2, NISST Framework, OMNeT++, INET Framework, ReaSE, NS2, NS3, M5 Simulator, OPNET, PLC & TIA Portal management Software which do not have the capability to do so. Also, using Stealthwatch tool to create a security baseline for Smart Grid environment, contributes to risk mitigation and sound security hygiene.展开更多
为提高分布式拒绝服务(Distributed Denial of Service,DDoS)攻击检出率,设计基于机器学习的无线网络DDoS攻击检测方法。首先,结合攻击时间序列构建无线网络DDoS攻击检测模型,利用深度学习设计无线网络DDoS攻击检测机制;其次,通过异常...为提高分布式拒绝服务(Distributed Denial of Service,DDoS)攻击检出率,设计基于机器学习的无线网络DDoS攻击检测方法。首先,结合攻击时间序列构建无线网络DDoS攻击检测模型,利用深度学习设计无线网络DDoS攻击检测机制;其次,通过异常流量判断,对照相应的流表特征信息完成分类检测;最后,进行实验分析。实验结果表明,该方法的DDoS攻击检出率较低,优于对照组。展开更多
分布式拒绝服务(Distributed Denial of Service,DDoS)攻击在网络中较为常见,但普通的DDos攻击检测方法难以对其追踪和防范,无法充分地考虑算法误差调整参数,导致检测精度较低。为此,提出基于反向传播(Back Propagation,BP)神经网络的D...分布式拒绝服务(Distributed Denial of Service,DDoS)攻击在网络中较为常见,但普通的DDos攻击检测方法难以对其追踪和防范,无法充分地考虑算法误差调整参数,导致检测精度较低。为此,提出基于反向传播(Back Propagation,BP)神经网络的DDos攻击自主检测方法,分析DDos攻击特点,采用信源地址、目标地址、包协议等数据包信息,提取DDoS攻击网络特征。采用误差BP算法进行参数训练,采用梯度下降法对各参数进行更新,利用BP神经网络进行DDos攻击自主检测。实验结果表明,通过对DDoS攻击的检测,该方法的检测准确率达到93.87%,并且具有良好的泛化性能。展开更多
文摘SDN(Software Defined Network,软件定义网络)是一种新兴的网络架构,它的控制与转发分离架构为网络管理带来了极大的便利性和灵活性,但同时也带来新的安全威胁和挑战。攻击者通过对SDN的集中式控制器进行DDoS(Distributed Denial of Service,分布式拒绝服务)攻击,会使信息不可达,造成网络瘫痪。为了检测DDoS攻击,提出了一种基于C4.5决策树的检测方法:通过提取交换机流表项信息,使用C4.5决策树算法训练数据集生成决策树对流量进行分类,实现DDoS攻击的检测,最后通过实验证明了该方法有更高的检测成功率,更低的误警率与较少的检测时间。
文摘The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communication network shares information about status of its several integrated IEDs (Intelligent Electronic Devices). However, the IEDs connected throughout the Smart Grid, open opportunities for attackers to interfere with the communications and utilities resources or take clients’ private data. This development has introduced new cyber-security challenges for the Smart Grid and is a very concerning issue because of emerging cyber-threats and security incidents that have occurred recently all over the world. The purpose of this research is to detect and mitigate Distributed Denial of Service [DDoS] with application to the Electrical Smart Grid System by deploying an optimized Stealthwatch Secure Network analytics tool. In this paper, the DDoS attack in the Smart Grid communication networks was modeled using Stealthwatch tool. The simulated network consisted of Secure Network Analytic tools virtual machines (VMs), electrical Grid network communication topology, attackers and Target VMs. Finally, the experiments and simulations were performed, and the research results showed that Stealthwatch analytic tool is very effective in detecting and mitigating DDoS attacks in the Smart Grid System without causing any blackout or shutdown of any internal systems as compared to other tools such as GNS3, NeSSi2, NISST Framework, OMNeT++, INET Framework, ReaSE, NS2, NS3, M5 Simulator, OPNET, PLC & TIA Portal management Software which do not have the capability to do so. Also, using Stealthwatch tool to create a security baseline for Smart Grid environment, contributes to risk mitigation and sound security hygiene.
文摘为提高分布式拒绝服务(Distributed Denial of Service,DDoS)攻击检出率,设计基于机器学习的无线网络DDoS攻击检测方法。首先,结合攻击时间序列构建无线网络DDoS攻击检测模型,利用深度学习设计无线网络DDoS攻击检测机制;其次,通过异常流量判断,对照相应的流表特征信息完成分类检测;最后,进行实验分析。实验结果表明,该方法的DDoS攻击检出率较低,优于对照组。
文摘分布式拒绝服务(Distributed Denial of Service,DDoS)攻击在网络中较为常见,但普通的DDos攻击检测方法难以对其追踪和防范,无法充分地考虑算法误差调整参数,导致检测精度较低。为此,提出基于反向传播(Back Propagation,BP)神经网络的DDos攻击自主检测方法,分析DDos攻击特点,采用信源地址、目标地址、包协议等数据包信息,提取DDoS攻击网络特征。采用误差BP算法进行参数训练,采用梯度下降法对各参数进行更新,利用BP神经网络进行DDos攻击自主检测。实验结果表明,通过对DDoS攻击的检测,该方法的检测准确率达到93.87%,并且具有良好的泛化性能。