The vibrational motions are usually neglected when calculating(e,2e) triple differential cross sections(TDCSs) of molecules. Here, multi-center distorted-wave method(MCDW) has been modified by including molecular vibr...The vibrational motions are usually neglected when calculating(e,2e) triple differential cross sections(TDCSs) of molecules. Here, multi-center distorted-wave method(MCDW) has been modified by including molecular vibrations. This vibrational MCDW method is employed to calculate the TDCSs of 1b3gorbital of ethylene at low(100 eV) and medium(250 eV) incident electron energies in coplanar asymmetric kinematic condition. The results show that molecular vibrations significantly influence the angular distributions of the TDCSs, especially in the binary region along momentum transfer near the Bethe ridge.展开更多
Electron-impact single-ionization(EISI)cross sections for W^(q+)(q=9,10)ions have been calculated by using the level-to-level distorted-wave(LLDW)method with emphasis on the contribution of metastable states to the to...Electron-impact single-ionization(EISI)cross sections for W^(q+)(q=9,10)ions have been calculated by using the level-to-level distorted-wave(LLDW)method with emphasis on the contribution of metastable states to the total ionization cross sections.Contributions from direct-ionization(DI)and excitation-autoionization(EA)processes are taken into account.The calculated cross sections include the contributions from both the ground configuration and the long-lived metastable states with lifetimes exceeding 10^(-6)s.Calculated cross sections are in good agreement with experimental measurements when the influence of metastable states on the total ionization cross section are well considered.展开更多
The (e, 2e) triple differential cross sections of 2s orbitals of neon and neonic ions (Z = 11-14) are calculated using a distorted-wave Born approximation under coplanar asymmetric geometry. The calculated results...The (e, 2e) triple differential cross sections of 2s orbitals of neon and neonic ions (Z = 11-14) are calculated using a distorted-wave Born approximation under coplanar asymmetric geometry. The calculated results show that, with the increase in the nuclear charge number Z, the amplitude of triple differential cross sections decreases. The angle difference between the binary peak position and the direction of momentum transfer gradually increases with the increase in the nuclear charge Z, and a new structure appears at an ejected angle 90° 〈 θ2 〈 120°. Three kinds of collision processes are proposed to illustrate the formation mechanism of such collision peaks.展开更多
The four-body Coulomb–Born distorted wave approximation is applied to investigate the integral as well as projectile angular-differential cross sections for single-electron capture in the collision of energetic singl...The four-body Coulomb–Born distorted wave approximation is applied to investigate the integral as well as projectile angular-differential cross sections for single-electron capture in the collision of energetic singly positive charged helium ions with helium atoms in their ground states. The formalism satisfies the correct boundary conditions. The influence of the dynamic electron correlations on the cross sections is studied by considering the inter electronic interactions in the complete perturbation potentials in post form. Also, the sensitivity of the cross sections to the static electronic correlations is studied by using the single-zeta and the highly correlated Byron–Joachain wave functions to describe the initial bound state of the active electrons. The obtained results for the energy range of 40–5000 ke V/amu are reported and compared with other three- and four-body theoretical data and available experimental measurements. The comparison leads us to discuss the validity of the applied approach and survey the interaction effects on the cross sections by recognizing the electron–electron interaction. Particularly, for differential cross sections, the comparison of the present four-body method with the experiment shows that the agreement is not as good as that for its three-body version.展开更多
The (e, 2e) triple differential cross sections (TDCSs) of Ar (3s) are calculated by using distorted-wave Born approx- imation under coplanar asymmetric geometry. The incident electron energy is 113.5 eV, and the...The (e, 2e) triple differential cross sections (TDCSs) of Ar (3s) are calculated by using distorted-wave Born approx- imation under coplanar asymmetric geometry. The incident electron energy is 113.5 eV, and the scattering electron angle 01 is -15~. The ejected electron energy is set at 10 eV, 7.5 eV, 5 eV, and 2 eV, respectively. The polarization effects have been discussed and the polarization potential Vpol changing from a second-order to a fourth-order term has been analyzed. Our calculated TDCSs have been compared with reported experimental and theoretical results, and the calculated TDCSs of polarization potential up to the fourth order could give a good fit with experimental results in the binary region, but fail to predict the correct recoil-to-binary ratio in most cases.展开更多
The three-body distorted=wave Born approximation has been used to calculate the (e, 2e) triple differential cross sections (TDCSs) of Cu+ (3p) in different kinematical variables in coplanar asymmetric geometry....The three-body distorted=wave Born approximation has been used to calculate the (e, 2e) triple differential cross sections (TDCSs) of Cu+ (3p) in different kinematical variables in coplanar asymmetric geometry. The angles 4°, 10° and 20° were selected as the scattering electron angles. Under high incident energy (≥500 eV) and high asymmetric detection energy, the binary peaks showed abnormal splits. Such abnormal splits have not been observed in atomic target and outer valence orbitals of ionic target, which indicates that an (e, 2e) process for inner valence orbitals of ionic target would be more complicated than outer valence orbitals. Furthermore, some pronounced peaks appeared at certain ejected angles. We considered that these pronounced peaks are probably related to one kind of double-binary collision.展开更多
A four-body distorted-wave approximation is applied for theoretical analysis of the fully differential cross sections(FDCS) for proton-impact single ionization of helium atoms in their ground states. The nine-dimens...A four-body distorted-wave approximation is applied for theoretical analysis of the fully differential cross sections(FDCS) for proton-impact single ionization of helium atoms in their ground states. The nine-dimensional integrals for the partial amplitudes are analytically reduced to closed-form expressions or some one-dimensional integrals which can be easily calculated numerically. Calculations are performed in the scattering and perpendicular planes. The influence of the target static electron correlations on the process is investigated using a number of different bound-state wave functions for the ground state of the helium targets. An illustrative computation is performed for 75-ke V proton–helium collisions and the obtained results are compared with experimental data and other theoretical predictions. Although for small momentum transfers, the comparison shows a reasonable agreement with experiments in the scattering and perpendicular planes, some significant discrepancies are still present at large momentum transfers in these planes. However, our results are compatible and for some cases, better than those of the other sophisticated calculations.展开更多
This paper calculates the electron impact excitation rate coefficients from the ground term 2s^22p^2 3p to the excited terms of the 2s^22p^2, 2s^2p^3, 2s^22p3s, 2s^22p3p, and 2s^22p3d configurations of N II. In the ca...This paper calculates the electron impact excitation rate coefficients from the ground term 2s^22p^2 3p to the excited terms of the 2s^22p^2, 2s^2p^3, 2s^22p3s, 2s^22p3p, and 2s^22p3d configurations of N II. In the calculations, multiconfiguration Dirac-Fork wave functions have been applied to describe the target-ion states and relativistic distorted-wave calculation has been performed to generate fine-structure collision strengths. The collision strengths are then averaged over a Maxwellian distribution of electron velocities in order to generate the effective collision strengths. The calculated rate coefficients are compared with available experimental and theoretical data, and some good agreements are found for the outer shell electron excitations. But for the inner shell electron excitations there are still some differences between the present calculations and available experiments.展开更多
The (e, 2e) triple-differential cross sections of Ag+ (4p, 4s) are calculated based on the three-body distorted-wave Born approximation considering post-collision interaction in coplanar symmetric geometry. The e...The (e, 2e) triple-differential cross sections of Ag+ (4p, 4s) are calculated based on the three-body distorted-wave Born approximation considering post-collision interaction in coplanar symmetric geometry. The energy of the outgoing electron is set to be 50, 70, 100, 200, 300,500, 700, and 1000 eV, and the intensity and splitting of forward and backward peaks are discussed in detail. Some new structures are observed around 15° and 85° for 4p and 4s orbitals. Structures in triple-differential cross sections at 15° are reported for the first time. A double-binary collision is proposed to explain the formation of such structures. The structures at 85° are also considered as the result of one kind of double-binary collision.展开更多
We report a measurement of electron momentum distributions of valence orbitals of cyclopentene employing symmetric noncoplanar(e,2e)kinematics at impact energies of 1200 and 1600 eV plus the binding energy.Experimenta...We report a measurement of electron momentum distributions of valence orbitals of cyclopentene employing symmetric noncoplanar(e,2e)kinematics at impact energies of 1200 and 1600 eV plus the binding energy.Experimental momentum profiles for individual ionization bands are obtained and compared with theoretical calculations considering nuclear dynamics by harmonic analytical quantum mechanical and thermal sampling molecular dynamics approaches.The results demonstrate that molecular vibrational motions including ring-puckering of this flexible cyclic molecule have obvious influences on the electron momentum profiles for the outer valence orbitals,especially in the low momentum region.Forπ^(*)-like molecular orbitals 3a′′,2a′′,and 3a′,the impact-energy dependence of the experimental momentum profiles indicates a distorted wave effect.展开更多
The electron-impact ionization of lithium-like ions C^(3+),N^(4+),O^(5+),Ne^(7+),and Fe2^(3+)is studied using a combination of two-potential distorted-wave and R-matrix methods with a relativistic correction.Total cro...The electron-impact ionization of lithium-like ions C^(3+),N^(4+),O^(5+),Ne^(7+),and Fe2^(3+)is studied using a combination of two-potential distorted-wave and R-matrix methods with a relativistic correction.Total cross sections are computed for incident energies from 1 to 10 times of ionization energy and better agreements with the experimental results are obtained in comparison with the theoretical data available.It is found that the indirect ionization processes become significant for the incident energy larger than about four times of the ionization energy.Contributions from the exchange effects along the isoelectronic sequence are also discussed and found to be important.The present method can be used to obtain systematic ionization cross sections for highly charged ions across a wide incident energy range.展开更多
We report theoretical studies of electron impact triple differential cross sections of two bio-molecules,pyrimidine and tetrahydrofurfuryl alcohol,in the coplanar asymmetric kinematic conditions with the impact energy...We report theoretical studies of electron impact triple differential cross sections of two bio-molecules,pyrimidine and tetrahydrofurfuryl alcohol,in the coplanar asymmetric kinematic conditions with the impact energy of 250 eV and ejected electron energy of 20 eV at three scattering angles of-5°,-10°,and-15°.Present multi-center distorted-wave method well describes the experimental data,which was obtained by performing(e,2e)experiment.The calculations show that the secondary electron produced by the primary impact electron is strongly influenced by the molecular ionic multi-center potential,which must be considered when the low energy electron interacts with DNA analogues.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12004370 and 12127804)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB34020000)。
文摘The vibrational motions are usually neglected when calculating(e,2e) triple differential cross sections(TDCSs) of molecules. Here, multi-center distorted-wave method(MCDW) has been modified by including molecular vibrations. This vibrational MCDW method is employed to calculate the TDCSs of 1b3gorbital of ethylene at low(100 eV) and medium(250 eV) incident electron energies in coplanar asymmetric kinematic condition. The results show that molecular vibrations significantly influence the angular distributions of the TDCSs, especially in the binary region along momentum transfer near the Bethe ridge.
基金Project supported by the National Natural Science Foundation of China(Grant No.11404152)Fundamental Research Funds for the Central Universities(Grant No.lzujbky2017-94)。
文摘Electron-impact single-ionization(EISI)cross sections for W^(q+)(q=9,10)ions have been calculated by using the level-to-level distorted-wave(LLDW)method with emphasis on the contribution of metastable states to the total ionization cross sections.Contributions from direct-ionization(DI)and excitation-autoionization(EA)processes are taken into account.The calculated cross sections include the contributions from both the ground configuration and the long-lived metastable states with lifetimes exceeding 10^(-6)s.Calculated cross sections are in good agreement with experimental measurements when the influence of metastable states on the total ionization cross section are well considered.
基金supported by Joint Large Scale Scientific Facility Funds of the National Natural Science Foundation of China(NSFC)and Chinese Academy of Sciences(CAS)(U1932110,NSFC(11805059,11805012,11675051,12322502),and 12335002)Fundamental Research Funds for the central Universities+3 种基金supported by Deutsche Forschungsgemeinschaft(DFG)(TRR110)NSFC through funds provided to the Sino-German CRC 110“Symmetries and the Emergence of Structure in QCD”(11621131001)supported in part by VolkswagenStiftung(93562)by the CAS President’s International Fellowship Initiative(PIFI)(2018DM0034)。
基金Project supported by the Fundamental Research Funds for the Central University of China(Grant No.13CX02019A)
文摘The (e, 2e) triple differential cross sections of 2s orbitals of neon and neonic ions (Z = 11-14) are calculated using a distorted-wave Born approximation under coplanar asymmetric geometry. The calculated results show that, with the increase in the nuclear charge number Z, the amplitude of triple differential cross sections decreases. The angle difference between the binary peak position and the direction of momentum transfer gradually increases with the increase in the nuclear charge Z, and a new structure appears at an ejected angle 90° 〈 θ2 〈 120°. Three kinds of collision processes are proposed to illustrate the formation mechanism of such collision peaks.
文摘The four-body Coulomb–Born distorted wave approximation is applied to investigate the integral as well as projectile angular-differential cross sections for single-electron capture in the collision of energetic singly positive charged helium ions with helium atoms in their ground states. The formalism satisfies the correct boundary conditions. The influence of the dynamic electron correlations on the cross sections is studied by considering the inter electronic interactions in the complete perturbation potentials in post form. Also, the sensitivity of the cross sections to the static electronic correlations is studied by using the single-zeta and the highly correlated Byron–Joachain wave functions to describe the initial bound state of the active electrons. The obtained results for the energy range of 40–5000 ke V/amu are reported and compared with other three- and four-body theoretical data and available experimental measurements. The comparison leads us to discuss the validity of the applied approach and survey the interaction effects on the cross sections by recognizing the electron–electron interaction. Particularly, for differential cross sections, the comparison of the present four-body method with the experiment shows that the agreement is not as good as that for its three-body version.
基金supported by the Fundamental Research Funds for the Central Universities of China(Grant Nos.13CX02019A and 13CX05017A)
文摘The (e, 2e) triple differential cross sections (TDCSs) of Ar (3s) are calculated by using distorted-wave Born approx- imation under coplanar asymmetric geometry. The incident electron energy is 113.5 eV, and the scattering electron angle 01 is -15~. The ejected electron energy is set at 10 eV, 7.5 eV, 5 eV, and 2 eV, respectively. The polarization effects have been discussed and the polarization potential Vpol changing from a second-order to a fourth-order term has been analyzed. Our calculated TDCSs have been compared with reported experimental and theoretical results, and the calculated TDCSs of polarization potential up to the fourth order could give a good fit with experimental results in the binary region, but fail to predict the correct recoil-to-binary ratio in most cases.
基金supported by Shandong Provincial Natural Science Foundation of China (Grant No. Q2008A07)
文摘The three-body distorted=wave Born approximation has been used to calculate the (e, 2e) triple differential cross sections (TDCSs) of Cu+ (3p) in different kinematical variables in coplanar asymmetric geometry. The angles 4°, 10° and 20° were selected as the scattering electron angles. Under high incident energy (≥500 eV) and high asymmetric detection energy, the binary peaks showed abnormal splits. Such abnormal splits have not been observed in atomic target and outer valence orbitals of ionic target, which indicates that an (e, 2e) process for inner valence orbitals of ionic target would be more complicated than outer valence orbitals. Furthermore, some pronounced peaks appeared at certain ejected angles. We considered that these pronounced peaks are probably related to one kind of double-binary collision.
文摘A four-body distorted-wave approximation is applied for theoretical analysis of the fully differential cross sections(FDCS) for proton-impact single ionization of helium atoms in their ground states. The nine-dimensional integrals for the partial amplitudes are analytically reduced to closed-form expressions or some one-dimensional integrals which can be easily calculated numerically. Calculations are performed in the scattering and perpendicular planes. The influence of the target static electron correlations on the process is investigated using a number of different bound-state wave functions for the ground state of the helium targets. An illustrative computation is performed for 75-ke V proton–helium collisions and the obtained results are compared with experimental data and other theoretical predictions. Although for small momentum transfers, the comparison shows a reasonable agreement with experiments in the scattering and perpendicular planes, some significant discrepancies are still present at large momentum transfers in these planes. However, our results are compatible and for some cases, better than those of the other sophisticated calculations.
基金supported by the National Natural Science Foundation of China (Grant Nos.10774122 and 10876028)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20070736001)the Technology and Innovation Program of Northwest Normal University (Grant No.NWNU-KJCXGC-03-21)
文摘This paper calculates the electron impact excitation rate coefficients from the ground term 2s^22p^2 3p to the excited terms of the 2s^22p^2, 2s^2p^3, 2s^22p3s, 2s^22p3p, and 2s^22p3d configurations of N II. In the calculations, multiconfiguration Dirac-Fork wave functions have been applied to describe the target-ion states and relativistic distorted-wave calculation has been performed to generate fine-structure collision strengths. The collision strengths are then averaged over a Maxwellian distribution of electron velocities in order to generate the effective collision strengths. The calculated rate coefficients are compared with available experimental and theoretical data, and some good agreements are found for the outer shell electron excitations. But for the inner shell electron excitations there are still some differences between the present calculations and available experiments.
基金Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. Q2008A07)
文摘The (e, 2e) triple-differential cross sections of Ag+ (4p, 4s) are calculated based on the three-body distorted-wave Born approximation considering post-collision interaction in coplanar symmetric geometry. The energy of the outgoing electron is set to be 50, 70, 100, 200, 300,500, 700, and 1000 eV, and the intensity and splitting of forward and backward peaks are discussed in detail. Some new structures are observed around 15° and 85° for 4p and 4s orbitals. Structures in triple-differential cross sections at 15° are reported for the first time. A double-binary collision is proposed to explain the formation of such structures. The structures at 85° are also considered as the result of one kind of double-binary collision.
基金supported by the National Natural Science Foundation of China(No.11534011,No.11874339,No.11804328)the National Key Research and Development Program of China(No.2017YFA0402300)。
文摘We report a measurement of electron momentum distributions of valence orbitals of cyclopentene employing symmetric noncoplanar(e,2e)kinematics at impact energies of 1200 and 1600 eV plus the binding energy.Experimental momentum profiles for individual ionization bands are obtained and compared with theoretical calculations considering nuclear dynamics by harmonic analytical quantum mechanical and thermal sampling molecular dynamics approaches.The results demonstrate that molecular vibrational motions including ring-puckering of this flexible cyclic molecule have obvious influences on the electron momentum profiles for the outer valence orbitals,especially in the low momentum region.Forπ^(*)-like molecular orbitals 3a′′,2a′′,and 3a′,the impact-energy dependence of the experimental momentum profiles indicates a distorted wave effect.
基金the National Natural Science Foundation of China(Grant Nos.11934004 and U1832201)the Science Challenge Project(Grant No.TZ2016005)the CAEP Foundation(Grant No.CX2019022).
文摘The electron-impact ionization of lithium-like ions C^(3+),N^(4+),O^(5+),Ne^(7+),and Fe2^(3+)is studied using a combination of two-potential distorted-wave and R-matrix methods with a relativistic correction.Total cross sections are computed for incident energies from 1 to 10 times of ionization energy and better agreements with the experimental results are obtained in comparison with the theoretical data available.It is found that the indirect ionization processes become significant for the incident energy larger than about four times of the ionization energy.Contributions from the exchange effects along the isoelectronic sequence are also discussed and found to be important.The present method can be used to obtain systematic ionization cross sections for highly charged ions across a wide incident energy range.
基金the National Natural Science Foundation of China(Grant Nos.12004370,11534011,and 11934004)the National Key Research and Development Program of China(Grant Nos.2017YFA0402300 and 2019YFA0210004).
文摘We report theoretical studies of electron impact triple differential cross sections of two bio-molecules,pyrimidine and tetrahydrofurfuryl alcohol,in the coplanar asymmetric kinematic conditions with the impact energy of 250 eV and ejected electron energy of 20 eV at three scattering angles of-5°,-10°,and-15°.Present multi-center distorted-wave method well describes the experimental data,which was obtained by performing(e,2e)experiment.The calculations show that the secondary electron produced by the primary impact electron is strongly influenced by the molecular ionic multi-center potential,which must be considered when the low energy electron interacts with DNA analogues.