Firstly, the macroscopic chemical equilibrium state of a series of chemical reactions between intercrystal brine and its media salt layer (salt deposit) in Qarhan Salt Lake was studied by using the Pitzer theory. Th...Firstly, the macroscopic chemical equilibrium state of a series of chemical reactions between intercrystal brine and its media salt layer (salt deposit) in Qarhan Salt Lake was studied by using the Pitzer theory. The concept of macroscopic solubility product and its relation with accumulated ore dissolving ratio were presented, which are used in the numerical model of dissolving and driving exploitation of potassium salt in Qarhan Salt Lake. And secondly, with a model forming idea of transport model for reacting solutes in the multi-component fresh groundwater system in porous media being a reference, a two-dimensional transport model coupled with a series of chemical reactions in a multi-component brine porous system (salt deposits) was developed by using the Pitzer theory. Meanwhile, the model was applied to model potassium/magnesium transport in Qarhan Salt Lake in order to study the transfer law of solid and liquid phases in the dissolving and driving process and to design the optimal injection/abstraction strategy for dissolving and capturing maximum Potassium/ Magnesium in the mining of salt deposits in Qarhan Salt Lake.展开更多
硅橡胶复合绝缘子的憎水性迁移特性使其污层具有憎水性,污层中盐分的溶出和流失过程都变得复杂。绝缘子的污闪特性与表面污层受潮时溶解并参与导电的盐分紧密相关,对有效附盐密度(effective equivalent salt deposit density,EESDD,标...硅橡胶复合绝缘子的憎水性迁移特性使其污层具有憎水性,污层中盐分的溶出和流失过程都变得复杂。绝缘子的污闪特性与表面污层受潮时溶解并参与导电的盐分紧密相关,对有效附盐密度(effective equivalent salt deposit density,EESDD,标记为ρEESDD)进行了更深入的研究。用溶出盐密减去流失盐密来表征有效附盐密度,通过试验研究了憎水性迁移时间和绝缘子表面灰密对ρEESDD的影响,以及自然积污绝缘子受潮过程中的ρEESDD。结果发现:绝缘子受潮时ρEESDD先增大后减小,最终趋于稳定;污层憎水性导致受潮时有效附盐密度的变化过程持续时间更长;灰密的增大会导致有效附盐密度的最大值更晚出现;自然积污绝缘子ρEESDD的最大值仅为污层总等值盐密的15%,说明较低的等值盐密也是复合绝缘子污闪电压高的原因之一。展开更多
基金the National Natural Science Foundation of China
文摘Firstly, the macroscopic chemical equilibrium state of a series of chemical reactions between intercrystal brine and its media salt layer (salt deposit) in Qarhan Salt Lake was studied by using the Pitzer theory. The concept of macroscopic solubility product and its relation with accumulated ore dissolving ratio were presented, which are used in the numerical model of dissolving and driving exploitation of potassium salt in Qarhan Salt Lake. And secondly, with a model forming idea of transport model for reacting solutes in the multi-component fresh groundwater system in porous media being a reference, a two-dimensional transport model coupled with a series of chemical reactions in a multi-component brine porous system (salt deposits) was developed by using the Pitzer theory. Meanwhile, the model was applied to model potassium/magnesium transport in Qarhan Salt Lake in order to study the transfer law of solid and liquid phases in the dissolving and driving process and to design the optimal injection/abstraction strategy for dissolving and capturing maximum Potassium/ Magnesium in the mining of salt deposits in Qarhan Salt Lake.
文摘硅橡胶复合绝缘子的憎水性迁移特性使其污层具有憎水性,污层中盐分的溶出和流失过程都变得复杂。绝缘子的污闪特性与表面污层受潮时溶解并参与导电的盐分紧密相关,对有效附盐密度(effective equivalent salt deposit density,EESDD,标记为ρEESDD)进行了更深入的研究。用溶出盐密减去流失盐密来表征有效附盐密度,通过试验研究了憎水性迁移时间和绝缘子表面灰密对ρEESDD的影响,以及自然积污绝缘子受潮过程中的ρEESDD。结果发现:绝缘子受潮时ρEESDD先增大后减小,最终趋于稳定;污层憎水性导致受潮时有效附盐密度的变化过程持续时间更长;灰密的增大会导致有效附盐密度的最大值更晚出现;自然积污绝缘子ρEESDD的最大值仅为污层总等值盐密的15%,说明较低的等值盐密也是复合绝缘子污闪电压高的原因之一。