Alkaline phosphatase activity (APA) and dissolved phosphorus were monitored during the batch cultures of two bone microalgae. Results indicate that variation of APA was in the shape of 'S' curve. Different spe...Alkaline phosphatase activity (APA) and dissolved phosphorus were monitored during the batch cultures of two bone microalgae. Results indicate that variation of APA was in the shape of 'S' curve. Different specs of dissolved phaphorus had different effects on APA. The concentrations of dis solved inorganic phosphorus (DIP) and and molecular dissolved organic phosphorus (SDOP) had a sig nificant effect on APA, while the concentration of large molecular dissolved organic phosphorus (LDOP) had a little effect on APA., and the increase of APA could accelerate the decomposing of LDOP in the medium. Results also show that algae species and abundance had why a little effect on APA.展开更多
The growth and alkaline phosphatase activity(APA) of two raphidophyceae species Chattonella marina and Heterosigma akashiwo were investigated in response to P-limitation and subsequent addition of dissolved inorgani...The growth and alkaline phosphatase activity(APA) of two raphidophyceae species Chattonella marina and Heterosigma akashiwo were investigated in response to P-limitation and subsequent addition of dissolved inorganic phosphorus(DIP, Na H2PO4) and two dissolved organic phosphorus(DOP) compounds: guanosine 5-monophosphate(GMP) and triethyl phosphate(TEP). APA levels increased greatly after P-starvation as the decrease of the cellular phosphorus quotes(Qp). C. marina responded to P-limitation quickly and strongly, with 10-fold increase in APA within 24 hr after P-starvation. The larger difference between maximal and minimal QP values in C. marina indicated its high capacity in P storage. APA of H. akashiwo was maximally enlarged about 2.5 times at 48 hr of P-starvation. After the addition of nutrients, cell numbers of C. marina increased in all treatments including the P-free culture, demonstrating the higher endurance of C. marina to P-limitation. However, those of H. akashiwo increased only in DIP and GMP cultures. APA increased only after the addition of the monophosphate ester GMP. The results suggest that quick responses of C. marina to P-limitation, high capacity in P storage as well as endurance for P-depletion provide this species an ecological advantage in phytoplankton community competition under DIP-limited conditions.展开更多
基金National Natural Science Foundation of China ! 49206063.
文摘Alkaline phosphatase activity (APA) and dissolved phosphorus were monitored during the batch cultures of two bone microalgae. Results indicate that variation of APA was in the shape of 'S' curve. Different specs of dissolved phaphorus had different effects on APA. The concentrations of dis solved inorganic phosphorus (DIP) and and molecular dissolved organic phosphorus (SDOP) had a sig nificant effect on APA, while the concentration of large molecular dissolved organic phosphorus (LDOP) had a little effect on APA., and the increase of APA could accelerate the decomposing of LDOP in the medium. Results also show that algae species and abundance had why a little effect on APA.
基金supported by the National Natural Science Foundation of China (No. 41276154, U1301235)
文摘The growth and alkaline phosphatase activity(APA) of two raphidophyceae species Chattonella marina and Heterosigma akashiwo were investigated in response to P-limitation and subsequent addition of dissolved inorganic phosphorus(DIP, Na H2PO4) and two dissolved organic phosphorus(DOP) compounds: guanosine 5-monophosphate(GMP) and triethyl phosphate(TEP). APA levels increased greatly after P-starvation as the decrease of the cellular phosphorus quotes(Qp). C. marina responded to P-limitation quickly and strongly, with 10-fold increase in APA within 24 hr after P-starvation. The larger difference between maximal and minimal QP values in C. marina indicated its high capacity in P storage. APA of H. akashiwo was maximally enlarged about 2.5 times at 48 hr of P-starvation. After the addition of nutrients, cell numbers of C. marina increased in all treatments including the P-free culture, demonstrating the higher endurance of C. marina to P-limitation. However, those of H. akashiwo increased only in DIP and GMP cultures. APA increased only after the addition of the monophosphate ester GMP. The results suggest that quick responses of C. marina to P-limitation, high capacity in P storage as well as endurance for P-depletion provide this species an ecological advantage in phytoplankton community competition under DIP-limited conditions.