't Hooft-Veltman Wilson dimensional regularization depends crucially upon Borel summability which entails strong links to the modern mathematical theory of transfinite sets and consequently to the fractal-Cantoria...'t Hooft-Veltman Wilson dimensional regularization depends crucially upon Borel summability which entails strong links to the modern mathematical theory of transfinite sets and consequently to the fractal-Cantorian spacetime proposal of Ord-Nottale-El Naschie. Starting from the above, we interpret the main step of the mathematical analysis in terms of elementary particles interaction. Thus 't Hooft-Veltman “perturbation” parameter which measures the deviation of the regulated space from the four dimensionality of spacetime is interpreted as an elementary particle with a topological mass charge equal to 0.18033989, i.e. double the magnitude of Hardy’s quantum entanglement. In turn, Hardy’s quantum entanglement which may be interpreted geometrically as a consequence of the zero set embedded in an empty set could also be interpreted as an exchange of pseudo elementary particles with a topological mass charge equal to Hardy’s entanglement where is the Hausdorff dimension of the zero set of the corresponding 't Hooft-Veltman spacetime.展开更多
文摘't Hooft-Veltman Wilson dimensional regularization depends crucially upon Borel summability which entails strong links to the modern mathematical theory of transfinite sets and consequently to the fractal-Cantorian spacetime proposal of Ord-Nottale-El Naschie. Starting from the above, we interpret the main step of the mathematical analysis in terms of elementary particles interaction. Thus 't Hooft-Veltman “perturbation” parameter which measures the deviation of the regulated space from the four dimensionality of spacetime is interpreted as an elementary particle with a topological mass charge equal to 0.18033989, i.e. double the magnitude of Hardy’s quantum entanglement. In turn, Hardy’s quantum entanglement which may be interpreted geometrically as a consequence of the zero set embedded in an empty set could also be interpreted as an exchange of pseudo elementary particles with a topological mass charge equal to Hardy’s entanglement where is the Hausdorff dimension of the zero set of the corresponding 't Hooft-Veltman spacetime.