期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
具有移动底边界的水波问题的仿线性化
1
作者 邵鑫华 臧爱彬 《纯粹数学与应用数学》 2023年第2期159-185,共27页
主要研究了带表面张力的无旋不可压缩重力水波问题,该水波的流动区域除了有自由上边界外,还具有给定的移动底边界.主要目的是利用仿微分方法对非线性水波问题的Zakharov表示进行仿线性化,关键在于处理Dirichlet-Neumann算子.借助Possio... 主要研究了带表面张力的无旋不可压缩重力水波问题,该水波的流动区域除了有自由上边界外,还具有给定的移动底边界.主要目的是利用仿微分方法对非线性水波问题的Zakharov表示进行仿线性化,关键在于处理Dirichlet-Neumann算子.借助Possion核定义正则映射来拉平边界会使仿线性化过程更加精细.这一仿线性化结果使非线性的水波方程成为线性系统,为研究具有移动底边界的水波方程适定性奠定了基础. 展开更多
关键词 水波问题 ZAKHAROV系统 仿线性化 dirichlet-neumann算子 移动底边界条件
下载PDF
周期底地形上内波的Hamilton长波展开 被引量:1
2
作者 周红燕 朴大雄 《应用数学和力学》 CSCD 北大核心 2008年第6期676-686,共11页
给出了周期底部边界条件下两层密度成层流体中2-维非线性长波问题的Hamilton公式.从该公式出发,应用Hamilton摄动理论,导出了底地形短尺度变化下描述双向长波运动的有效Boussinesq方程和描述单向长波运动的近似KdV方程.结果的推导都是... 给出了周期底部边界条件下两层密度成层流体中2-维非线性长波问题的Hamilton公式.从该公式出发,应用Hamilton摄动理论,导出了底地形短尺度变化下描述双向长波运动的有效Boussinesq方程和描述单向长波运动的近似KdV方程.结果的推导都是在多重尺度算子渐近分析理论框架下完成的. 展开更多
关键词 内波 Hamilton摄动理论 势函数 dirichlet-neumann算子 BOUSSINESQ方程 KDV方程
下载PDF
Hamiltonian long wave expansions for internal vaves over a periodically varying bottom
3
作者 周红燕 朴大雄 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第6期745-756,共12页
We derive a Hamiltonian formulation for two-dimensional nonlinear long waves between two bodies of immiscible fluid with a periodic bottom. From the formulation and using the Hamiltonian perturbation theory, we obtain... We derive a Hamiltonian formulation for two-dimensional nonlinear long waves between two bodies of immiscible fluid with a periodic bottom. From the formulation and using the Hamiltonian perturbation theory, we obtain effective Boussinesq equations that describe the motion of bidirectional long waves and unidirectional equations that are similar to the KdV equation for the case in which the bottom possesses short length scale. The computations for these results are performed in the framework of an asymptotic analysis of multiple scale operators. 展开更多
关键词 Internal waves Hamiltonian perturbation theory potential function dirichlet-neumann operator Boussinesq equation KdV equation
下载PDF
含有广义p-Laplace算子的非线性边值问题解的存在性的研究 被引量:3
4
作者 魏利 Ravi P Agarwal 《数学物理学报(A辑)》 CSCD 北大核心 2012年第1期201-211,共11页
该文研究了两类含有广义p-Laplace算子的非线性边值问题.首先,利用变分不等式解的存在性的结果,证明了含有广义p-Laplace算子的非线性Dirichlet边值问题解的存在性.然后,提出了一类含有广义p-Laplace算子的非线性Neumann边值问题.通过... 该文研究了两类含有广义p-Laplace算子的非线性边值问题.首先,利用变分不等式解的存在性的结果,证明了含有广义p-Laplace算子的非线性Dirichlet边值问题解的存在性.然后,提出了一类含有广义p-Laplace算子的非线性Neumann边值问题.通过深入挖掘这两类非线性边值问题间的关系,借助于极大单调算子值域的一个扰动结果,证明了含有广义p-Laplace算子的非线性Neumann边值问题解的存在性.文中采用了一些新的证明技巧,推广和补充了作者以往的一些研究工作. 展开更多
关键词 极大单调算子 hemi连续映射 广义P-LAPLACE算子 值域和 非线性dirichletneumann边值问题.
下载PDF
Dirichlet-to-Neumann Map for a Hyperbolic Equation
5
作者 Fagueye Ndiaye Mouhamadou Ngom Diaraf Seck 《Journal of Applied Mathematics and Physics》 2023年第8期2231-2251,共21页
In this paper, we provide an explicit expression for the full Dirichlet-to-Neumann map corresponding to a radial potential for a hyperbolic differential equation in 3-dimensional. We show that the Dirichlet-Neumann op... In this paper, we provide an explicit expression for the full Dirichlet-to-Neumann map corresponding to a radial potential for a hyperbolic differential equation in 3-dimensional. We show that the Dirichlet-Neumann operators corresponding to a potential radial have the same properties for hyperbolic differential equations as for elliptic differential equations. We numerically implement the coefficients of the explicit formulas. Moreover, a Lipschitz type stability is established near the edge of the domain by an estimation constant. That is necessary for the reconstruction of the potential from Dirichlet-to-Neumann map in the inverse problem for a hyperbolic differential equation. 展开更多
关键词 Hyperbolic Differential Equation Calderón’s Problem Schrödinger operator POTENTIAL Inverse Potential Problem dirichlet-to-neumann Map Numerical Simulations Lipschitz Stability
下载PDF
THE GLOBAL SOLUTION AND BLOWUP OF A SPATIOTEMPORAL EIT PROBLEM WITH A DYNAMICAL BOUNDARY CONDITION
6
作者 谢明洪 谭忠 《Acta Mathematica Scientia》 SCIE CSCD 2023年第4期1881-1914,共34页
We study a spatiotemporal EIT problem with a dynamical boundary condition for the fractional Dirichlet-to-Neumann operator with a critical exponent.There are three major ingredients in this paper.The first is the fini... We study a spatiotemporal EIT problem with a dynamical boundary condition for the fractional Dirichlet-to-Neumann operator with a critical exponent.There are three major ingredients in this paper.The first is the finite time blowup and the decay estimate of the global solution with a lower-energy initial value.The second ingredient is the L^(q)(2 ≤q <∞) estimate of the global solution applying the Moser iteration,which allows us to show that any global solution is a classical solution.The third,which is the main ingredient of this paper,explores the long time asymptotic behavior of global solutions close to the stationary solution and the bubbling phenomenons by means of a concentration compactness principle. 展开更多
关键词 spatiotemporal EIT problem fractional dirichlet-to-neumann operator critical exponent bubbling phenomena
下载PDF
A FOURTH ORDER DERIVATIVE-FREE OPERATOR MARCHING METHOD FOR HELMHOLTZ EQUATION IN WAVEGUIDES
7
作者 Ya Yan Lu 《Journal of Computational Mathematics》 SCIE CSCD 2007年第6期719-729,共11页
A fourth-order operator marching method for the Helmholtz equation in a waveguide is developed in this paper. It is derived from a new fourth-order exponential integrator for linear evolution equations. The method imp... A fourth-order operator marching method for the Helmholtz equation in a waveguide is developed in this paper. It is derived from a new fourth-order exponential integrator for linear evolution equations. The method improves the second-order accuracy associated with the widely used step-wise coupled mode method where the waveguide is approximated by segments that are uniform in the propagation direction. The Helmholtz equation is solved using a one-way reformulation based on the Dirichlet-to-Neumann map. An alternative version closely related to the coupled mode method is also given. Numerical results clearly indicate that the method is more accurate than the coupled mode method while the required computing effort is nearly the same. 展开更多
关键词 Helmholtz equation WAVEGUIDES dirichlet-to-neumann map operator marching.
原文传递
非齐次波导方程基于状态转移算子和DtN映射的算法
8
作者 王寅 黄晋阳 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第6期124-127,共4页
针对存在内光源的导波方程,即非齐次Helmholtz方程,将波导方程的边值问题转化为可用步进算法的类"初值"处置问题,然后给出了一种基于Dirichlet-to-Neumann(DtN)映射和状态转移算子的算法。并给出了两个算例,算例表明此算法是... 针对存在内光源的导波方程,即非齐次Helmholtz方程,将波导方程的边值问题转化为可用步进算法的类"初值"处置问题,然后给出了一种基于Dirichlet-to-Neumann(DtN)映射和状态转移算子的算法。并给出了两个算例,算例表明此算法是非齐次周期波导问题的一种高效的计算方法。 展开更多
关键词 非齐次Helmholtz方程 周期结构 状态转移算子 dirichlet-to-neumann映射
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部