由于共形载体曲率的影响,共形阵列天线中各阵元单元方向图具有不同的指向,使得共形阵列天线具有了多极化特性(Polarization Diversity),为了描述共形阵列天线的多极化特性,通常在共形阵列天线的快拍数据模型中引入阵列入射信号的极化参...由于共形载体曲率的影响,共形阵列天线中各阵元单元方向图具有不同的指向,使得共形阵列天线具有了多极化特性(Polarization Diversity),为了描述共形阵列天线的多极化特性,通常在共形阵列天线的快拍数据模型中引入阵列入射信号的极化参数,因此共形阵列天线的DOA(Direction-Of-Arrival)估计需要与阵列入射信号极化参数联合估计.本文提出了一种盲极化DOA估计算法,通过在锥面共形阵列天线中设置三对特殊子阵,利用ESPRIT(Estimationof Signal Parameters via Rotational Invariance Techniques)算法,将入射信号极化参数与二维角参数去耦合,在入射信号极化参数未知条件下实现了高分辨DOA估计,并对估计性能进行了理论分析与推导,给出了参数估计的CRB(Cramer-RaoBound),通过Monte Carlo仿真实验验证了DOA估计算法的有效性.展开更多
提出了一种新的宽带DOA估计方法:频域子空间正交性测试方法(TOFS:Test of orthogonality of frequency sub- space)。该方法通过同时测试频域信号共同带宽内各频段噪声子空间与阵列流形之间的正交性来进行DOA估计。与宽带相干信号子空...提出了一种新的宽带DOA估计方法:频域子空间正交性测试方法(TOFS:Test of orthogonality of frequency sub- space)。该方法通过同时测试频域信号共同带宽内各频段噪声子空间与阵列流形之间的正交性来进行DOA估计。与宽带相干信号子空间方法不同,TOFS方法不需要任何初始值的预估及聚焦操作。与宽带非相干信号子空间方法也不同,TOFS方法同时测试各频段噪声子空间与阵列流形之间的正交性。本文仿真了TOFS与IMUSIC、CSSM、TOPS的性能比较。仿真结果表明TOFS方法在中等信噪比以上时有较好的性能,且避免了TOPS方法中常出现的伪峰。展开更多
The existing directions-of-arrival (DOAs) estimation methods for two-dimensional (2D) coherently distributed sources need one- or two-dimensional search, and the computational complexities of them are high. In add...The existing directions-of-arrival (DOAs) estimation methods for two-dimensional (2D) coherently distributed sources need one- or two-dimensional search, and the computational complexities of them are high. In addition, most of them are designed for special angular signal distribution functions. As a result, their performances will degenerate when deal with different sources with different angular signal distribution functions or unknown angular signal distribution functions. In this paper, a low-complexity decoupled DOAs estimation method without searching using two parallel uniform linear arrays (ULAs) is proposed for coherently distributed sources, as well as a novel parameter matching method. It can resolve the problems mentioned above efficiently. Simulation results validate the effectiveness of our approach.展开更多
MUSIC(Multiple Signal Classification)算法是波达角(the Direction of Arrival,DOA)估计的经典算法之一,但其在二维DOA估计中因需进行二维谱峰搜索而计算量十分巨大.为降低MUSIC算法的计算量,本文在引入变换域DOA概念的基础上提出了...MUSIC(Multiple Signal Classification)算法是波达角(the Direction of Arrival,DOA)估计的经典算法之一,但其在二维DOA估计中因需进行二维谱峰搜索而计算量十分巨大.为降低MUSIC算法的计算量,本文在引入变换域DOA概念的基础上提出了一种能够适用于任意阵列结构的二维DOA快速估计算法,即变换域MUSIC(transformed do-main-MUSIC,TD-MUSIC)算法.理论分析和仿真实验表明:该算法不但将空间谱峰搜索的范围减小一半而且具有更低维度的噪声子空间,因而其计算量远小于MUSIC算法.同时,新算法具有比MUSIC更高的空间分辨率.展开更多
文摘由于共形载体曲率的影响,共形阵列天线中各阵元单元方向图具有不同的指向,使得共形阵列天线具有了多极化特性(Polarization Diversity),为了描述共形阵列天线的多极化特性,通常在共形阵列天线的快拍数据模型中引入阵列入射信号的极化参数,因此共形阵列天线的DOA(Direction-Of-Arrival)估计需要与阵列入射信号极化参数联合估计.本文提出了一种盲极化DOA估计算法,通过在锥面共形阵列天线中设置三对特殊子阵,利用ESPRIT(Estimationof Signal Parameters via Rotational Invariance Techniques)算法,将入射信号极化参数与二维角参数去耦合,在入射信号极化参数未知条件下实现了高分辨DOA估计,并对估计性能进行了理论分析与推导,给出了参数估计的CRB(Cramer-RaoBound),通过Monte Carlo仿真实验验证了DOA估计算法的有效性.
文摘提出了一种新的宽带DOA估计方法:频域子空间正交性测试方法(TOFS:Test of orthogonality of frequency sub- space)。该方法通过同时测试频域信号共同带宽内各频段噪声子空间与阵列流形之间的正交性来进行DOA估计。与宽带相干信号子空间方法不同,TOFS方法不需要任何初始值的预估及聚焦操作。与宽带非相干信号子空间方法也不同,TOFS方法同时测试各频段噪声子空间与阵列流形之间的正交性。本文仿真了TOFS与IMUSIC、CSSM、TOPS的性能比较。仿真结果表明TOFS方法在中等信噪比以上时有较好的性能,且避免了TOPS方法中常出现的伪峰。
基金Supported by the National Natural Science Foundation of China (Grant No. 60772146)the Program for New Century Excellent Talents in University (Grant No. NCET-05-0806)
文摘The existing directions-of-arrival (DOAs) estimation methods for two-dimensional (2D) coherently distributed sources need one- or two-dimensional search, and the computational complexities of them are high. In addition, most of them are designed for special angular signal distribution functions. As a result, their performances will degenerate when deal with different sources with different angular signal distribution functions or unknown angular signal distribution functions. In this paper, a low-complexity decoupled DOAs estimation method without searching using two parallel uniform linear arrays (ULAs) is proposed for coherently distributed sources, as well as a novel parameter matching method. It can resolve the problems mentioned above efficiently. Simulation results validate the effectiveness of our approach.
文摘由于共形天线阵列流形的多极化特性(polarization diversity,PD),信源方位参数与极化状态的"耦合"是实现共形阵列天线波达方向(direction-of-arrival,DOA)估计的主要难点。针对柱面共形阵列天线的特点,建立了柱面共形阵列天线的导向矢量模型;通过合理的阵元排列结构设计,结合ESPRIT(esti mation of signalparameters via rotational invariance techniques)算法参数估计的特点,实现了信源极化状态与方位参数的去耦合,推导了ESPRIT算法多参数估计的参数配对方法,最终提出了柱面共形阵列天线盲极化DOA估计算法。计算机Monte Carlo仿真实验验证了所提算法的有效性。
文摘MUSIC(Multiple Signal Classification)算法是波达角(the Direction of Arrival,DOA)估计的经典算法之一,但其在二维DOA估计中因需进行二维谱峰搜索而计算量十分巨大.为降低MUSIC算法的计算量,本文在引入变换域DOA概念的基础上提出了一种能够适用于任意阵列结构的二维DOA快速估计算法,即变换域MUSIC(transformed do-main-MUSIC,TD-MUSIC)算法.理论分析和仿真实验表明:该算法不但将空间谱峰搜索的范围减小一半而且具有更低维度的噪声子空间,因而其计算量远小于MUSIC算法.同时,新算法具有比MUSIC更高的空间分辨率.