The existing directions-of-arrival (DOAs) estimation methods for two-dimensional (2D) coherently distributed sources need one- or two-dimensional search, and the computational complexities of them are high. In add...The existing directions-of-arrival (DOAs) estimation methods for two-dimensional (2D) coherently distributed sources need one- or two-dimensional search, and the computational complexities of them are high. In addition, most of them are designed for special angular signal distribution functions. As a result, their performances will degenerate when deal with different sources with different angular signal distribution functions or unknown angular signal distribution functions. In this paper, a low-complexity decoupled DOAs estimation method without searching using two parallel uniform linear arrays (ULAs) is proposed for coherently distributed sources, as well as a novel parameter matching method. It can resolve the problems mentioned above efficiently. Simulation results validate the effectiveness of our approach.展开更多
在相干信源下,传统的MUSIC(MUltiple SIgnal Classification)算法不能准确地估计波达方向。为此,在对传统的MUSIC算法进行研究的基础上,提出了一种改进的MUSIC算法。该算法是将阵元接收的数据做相应的变换,从而得到新的阵列数据,再通过...在相干信源下,传统的MUSIC(MUltiple SIgnal Classification)算法不能准确地估计波达方向。为此,在对传统的MUSIC算法进行研究的基础上,提出了一种改进的MUSIC算法。该算法是将阵元接收的数据做相应的变换,从而得到新的阵列数据,再通过求互协方差等运算,得到新的数据协方差矩阵。同时,对该算法和传统的MUSIC算法进行了仿真,对其DOA(Direction-of-Arrival)估计性能进行比较。仿真实验表明,改进后的算法在相干信源的情况下具有很好的去相干性能,而且没有阵列孔径的损失。能精确地估计信号的波达方向。展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 60772146)the Program for New Century Excellent Talents in University (Grant No. NCET-05-0806)
文摘The existing directions-of-arrival (DOAs) estimation methods for two-dimensional (2D) coherently distributed sources need one- or two-dimensional search, and the computational complexities of them are high. In addition, most of them are designed for special angular signal distribution functions. As a result, their performances will degenerate when deal with different sources with different angular signal distribution functions or unknown angular signal distribution functions. In this paper, a low-complexity decoupled DOAs estimation method without searching using two parallel uniform linear arrays (ULAs) is proposed for coherently distributed sources, as well as a novel parameter matching method. It can resolve the problems mentioned above efficiently. Simulation results validate the effectiveness of our approach.
文摘在相干信源下,传统的MUSIC(MUltiple SIgnal Classification)算法不能准确地估计波达方向。为此,在对传统的MUSIC算法进行研究的基础上,提出了一种改进的MUSIC算法。该算法是将阵元接收的数据做相应的变换,从而得到新的阵列数据,再通过求互协方差等运算,得到新的数据协方差矩阵。同时,对该算法和传统的MUSIC算法进行了仿真,对其DOA(Direction-of-Arrival)估计性能进行比较。仿真实验表明,改进后的算法在相干信源的情况下具有很好的去相干性能,而且没有阵列孔径的损失。能精确地估计信号的波达方向。