The radiation of black hole contributes to the shrinking of the event horizon such that the background spacetime should not be fixed. In this study we take into account the self-gravitation effect to study the radiati...The radiation of black hole contributes to the shrinking of the event horizon such that the background spacetime should not be fixed. In this study we take into account the self-gravitation effect to study the radiation of Kerr Newman-Kasuya black hole as tunnelling. Using the facts of energy conservation and angular momentum conservation we derive the tunnelling rate and show that the spectrum of the radiation as tunnelling is not purely thermal.展开更多
A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and...A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.展开更多
Let X= {x(t, ω), t≥0} be d(≥3)-dimensional Brownian motion on probability space (Ω, F, P) with values in Euclidean space R^d; B^d be the Borel σ-algebra in R^d. The transition probability density of X
Quantum simulation is a powerful tool to study a variety of problems in physics, ranging from high-energy physics to condensed-matter physics. In this article, we review the recent theoretical and experimental progres...Quantum simulation is a powerful tool to study a variety of problems in physics, ranging from high-energy physics to condensed-matter physics. In this article, we review the recent theoretical and experimental progress in quantum simulation of Dirac equation with tunable parameters by using ultracold neutral atoms trapped in optical lattices or subject to light-induced synthetic gauge fields. The effective theories for the quasiparticles become relativistic under certain conditions in these systems, making them ideal platforms for studying the exotic relativistic effects. We focus on the realization of one, two, and three dimensional Dirac equations as well as the detection of some relativistic effects, including particularly the well-known Zitterbewegung effect and Klein tunneling. The realization of quantum anomalous Hall effects is also briefly discussed.展开更多
An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is carried out for the super Dirac systems. Under the obtained symmetry constraint, the n-th flow of the sup...An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is carried out for the super Dirac systems. Under the obtained symmetry constraint, the n-th flow of the super Dirac hierarchy is decomposed into two super finite-diinensional integrable Hamiltonian systems, defined over the super- symmetry manifold R^4N{2N with the corresponding dynamical variables x and tn. The integrals of motion required for Liouville integrability are explicitly given.展开更多
The Wigner function for the Dirac oscillator in spinor space is studied in this paper. Firstly, since the Dirac equation is described as a matrix equation in phase space, it is necessary to define the Wigner function ...The Wigner function for the Dirac oscillator in spinor space is studied in this paper. Firstly, since the Dirac equation is described as a matrix equation in phase space, it is necessary to define the Wigner function as a matrix function in spinor space. Secondly, the matrix form of the Wigner function is proven to support the Dirac equation. Thirdly, by solving the Dirac equation, energy levels and the Wigner function for the Dirac oscillator in spinor space are obtained.展开更多
By using the standard PMNS (Pontecorvo-Maki-Nakagawa-Sakata) mixing matrix and applying the rule for the sum of the oscillation probabilities of three neutrinos, the equations of motion were derived in which the Dirac...By using the standard PMNS (Pontecorvo-Maki-Nakagawa-Sakata) mixing matrix and applying the rule for the sum of the oscillation probabilities of three neutrinos, the equations of motion were derived in which the Dirac CP violating phase appeared as an unknown quantity. The equations of motion were separately derived for each of the three possible transitions for flavor-neutrino oscillations. Two roots of those equations were obtained in the form of two formulas for the Dirac CP violating phase with opposite signs. In the mathematical sense, the connection between those formulas was established in order to maintain the continuous process of oscillation of three neutrinos. This made it possible to calculate the numerical value for the Dirac CP violating phase, the Jarlskog invariant and to write the general form of the PMNS mixing matrix in the final form in which all its elements are defined with explicit numerical values.展开更多
We compare Newton’s force law of universal gravitation with a corrected simple approach based on Bhandari’s recently presented work, where the gravitation constant G is maintained. A reciprocity relation exists betw...We compare Newton’s force law of universal gravitation with a corrected simple approach based on Bhandari’s recently presented work, where the gravitation constant G is maintained. A reciprocity relation exists between both alternative gravity formulas with respect to the distances between mass centers. We conclude a one-to-one mapping of the two gravitational formulas. We don’t need Einstein’s construct of spacetime bending by matter.展开更多
Owing to the significant development in graphene,an increasing number of studies have been conducted to identify novel two-dimensional(2D)organic materials with Dirac cones and topological properties.Although a series...Owing to the significant development in graphene,an increasing number of studies have been conducted to identify novel two-dimensional(2D)organic materials with Dirac cones and topological properties.Although a series of toy models based on specific lattice patterns has been proposed and demonstrated to possess a Dirac cone,realistic materials corresponding to the lattice models must be identified to achieve excellent properties for practical applications.To understand factors contributing to the rarity of 2D organic Dirac materials and provide guidance for identifying novel organic Dirac systems,we review recent theoretical studies pertaining to various 2D Dirac models and their corresponding organic Dirac materials,including the Haldane,Kagome,Libe,linecentered honeycomb,and Cairo pentagonal models.Subsequently,the corresponding structural and topological electronic properties are summarized.Additionally,we investigate the relationship between the existence of Dirac cones and their structural features,as well as the manner by which Dirac points emerge and propagate in these systems.展开更多
By virtue of the new technique of performing integration over Dirac's ket-bra operators, we ex- plore quantum optical version of classical optical transformations such as optical Fresnel transform, Hankel transform, ...By virtue of the new technique of performing integration over Dirac's ket-bra operators, we ex- plore quantum optical version of classical optical transformations such as optical Fresnel transform, Hankel transform, fractional Fourier transform, Wigner transform, wavelet transform and Fresnel- Hadmard combinatorial transform etc. In this way one may gain benefit for developing classical optics theory from the research in quantum optics, or vice-versa. We cannot only find some new quantum mechanical unitary operators which correspond to the known optical transformations, de- riving a new theorem for calculating quantum tomogram of density operators, but also can reveal some new classical optical transformations. For examples, we find the generalized Fresnel opera- tor (GFO) to correspond to the generalized Fresnel transform (GFT) in classical optics. We derive GFO's normal product form and its canonical coherent state representation and find that GFO is the loyal representation of symplectic group multiplication rule. We show that GFT is just the transformation matrix element of GFO in the coordinate representation such that two successive GFTs is still a GFT. The ABCD rule of the Gaussian beam propagation is directly demonstrated in the context of quantum optics. Especially, the introduction of quantum mechanical entangled state representations opens up a new area in finding new classical optical transformations. The complex wavelet transform and the condition of mother wavelet are studied in the context of quantum op- tics too. Throughout our discussions, the coherent state, the entangled state representation of the two-mode squeezing operators and the technique of integration within an ordered product (IWOP) of operators are fully used. All these have confirmed Dirac's assertion: "...for a quantum dynamic system that has a classical analogue, unitary transformation in the quantum theory is the analogue of contact transformation in the classical theory".展开更多
In this work, we discuss the possibility to classify relativity in accordance with the classification of second order partial differential equations that have been applied into the formulation of physical laws in phys...In this work, we discuss the possibility to classify relativity in accordance with the classification of second order partial differential equations that have been applied into the formulation of physical laws in physics. In mathematics, since second order partial differential equations can be classified into hyperbolic, elliptic or parabolic type, therefore we show that it is also possible to classify relativity accordingly into hyperbolic, elliptic or parabolic type by establishing coordinate transformations that preserve the forms of these second order partial differential equations. The coordinate transformation that preserves the form of the hyperbolic equation is the Lorentz transformation and the associated space is the hyperbolic, or pseudo-Euclidean, relativistic spacetime. Typical equations in physics that comply with hyperbolic relativity are Maxwell and Dirac equations. The coordinate transformation that preserves the form of the elliptic equation is the modified Lorentz transformation that we have formulated in our work on Euclidean relativity and the associated space is the elliptic, or Euclidean, relativistic spacetime. As we will show in this work, equations that comply with elliptic relativity are the equations that describe the subfields of Maxwell and Dirac field. And the coordinate transformation that preserves the form of the parabolic equation is the Euclidean transformation consisting of the translation and rotation in the spatial space and the associated space is the parabolic relativistic spacetime, which is a Euclidean space with a universal time. Typical equations in physics that comply with parabolic relativity are the diffusion equation, the Schrödinger equation and in particular the diffusion equations that are derived from the four-current defined in terms of the differentiable structures of the spacetime manifold, and the Ricci flow.展开更多
We investigate the spin and pseudospin symmetries of the Dirac equation under modified deformed Hylleraas potential via a Pekeris approximation and the Nikiforov-Uvarov technique. A tensor interaction of Coulomb form ...We investigate the spin and pseudospin symmetries of the Dirac equation under modified deformed Hylleraas potential via a Pekeris approximation and the Nikiforov-Uvarov technique. A tensor interaction of Coulomb form is considered and its degeneracy-removing role is discussed in detail. The solutions are reported for an arbitrary quantum number in a compact form and useful numerical data are included.展开更多
Every four years the Committee on Data for Science and Technology (CODATA) supplies a self-consistent set of values of the basic constants and conversion factors of physics recommended for international use. In 2013, ...Every four years the Committee on Data for Science and Technology (CODATA) supplies a self-consistent set of values of the basic constants and conversion factors of physics recommended for international use. In 2013, the World-Universe Model (WUM) proposed a principally different depiction of the World as an alternative to the picture of the Big Bang Model. This article: 1) Gives the short history of Classical Physics before Special Relativity;2) Calculates Fundamental Physical Constants based on experimentally measured Rydberg constant, Electrodynamic constant, Electron Charge-to-Mass Ratio, and Planck constant;3) Discusses Electrodynamic constant and Speed of Light;4) Considers Dimensionless Fundamental Parameters (Dirac Large Number Q and Dimensionless Rydberg Constant α);5) Calculates Newtonian Constant of Gravitation based on the Inter-connectivity of Primary Physical Parameters;6) Makes a detailed analysis of the Self-consistency of Fundamental Physical Constants and Primary Physical Parameters through the prism of WUM. The performed analysis suggests: 1) Discontinuing using the notion “Vacuum” and its characteristics (Speed of Light in Vacuum, Characteristic Impedance of Vacuum, Vacuum Magnetic Permeability, Vacuum Electric Permittivity);2) Accepting the exact numerical values of Electrodynamic constant, Planck constant, Elementary charge, and Dimensionless Rydberg Constant α. WUM recommends the predicted value of Newtonian Constant of Gravitation in 2018 to be considered in CODATA Recommend Values of the Fundamental Physical Constants 2022.展开更多
When one function is defined as a differential operation on another function, it’s often desirable to invert the definition, to effectively “undo” the differentiation. A Green’s function approach is often used to ...When one function is defined as a differential operation on another function, it’s often desirable to invert the definition, to effectively “undo” the differentiation. A Green’s function approach is often used to accomplish this, but variations on this theme exist, and we examine a few such variations. The mathematical analysis of is sought in the form if such an inverse operator exists, but physics is defined by both mathematical formula and ontological formalism, as I show for an example based on the Dirac equation. Finally, I contrast these “standard” approaches with a novel exact inverse operator for field equations.展开更多
The known equivalence of 8-dimensional chiral spinors and vectors, also referred to as triality, is discussed for (4 + 4)-space. Split octonionic representation of SO(4, 4) and Spin(4, 4) groups and the trilinear inva...The known equivalence of 8-dimensional chiral spinors and vectors, also referred to as triality, is discussed for (4 + 4)-space. Split octonionic representation of SO(4, 4) and Spin(4, 4) groups and the trilinear invariant form are explicitly written and compared with Clifford algebraic matrix representation. It is noted that the complete algebra of split octonionic basis units can be recovered from the Moufang and Malcev relations for the three vector-like elements. Lagrangians on split octonionic fields that generalize Dirac and Maxwell systems are constructed using group invariant forms. It is shown that corresponding equations are related to split octonionic analyticity conditions.展开更多
In 1937, P. Dirac proposed the Large Number Hypothesis and the Hypothesis of the variable gravitational “constant”, and later added the notion of continuous creation of Matter in the World. The Hypersphere World-Uni...In 1937, P. Dirac proposed the Large Number Hypothesis and the Hypothesis of the variable gravitational “constant”, and later added the notion of continuous creation of Matter in the World. The Hypersphere World-Universe Model (WUM) follows these ideas, albeit introducing a different mechanism of Matter creation. In this paper, we show that Gravitational parameter G that can be measured directly makes measurable all Cosmological parameters, which cannot be measured directly.展开更多
In the present work, it will be shown that the dimensionless number 137 of the fine-structure constant α demands a quantization of space. For this purpose, we refer to a volume constant of electromagnetic processes, ...In the present work, it will be shown that the dimensionless number 137 of the fine-structure constant α demands a quantization of space. For this purpose, we refer to a volume constant of electromagnetic processes, which takes effect as a volume quantum. This involves not only a re-evaluation of the Dirac equation but also, and above all, a determination of Einstein’s velocity vector as the fundamental property of these processes. A prerequisite is the linking of the hydrogen spectrum with the hydrogen nucleus.展开更多
Taking the Big Bang as an established fact, the question inevitably arises about what exactly caused it, in what environment could it have happened and what happened before it. The developed approach allows us to shed...Taking the Big Bang as an established fact, the question inevitably arises about what exactly caused it, in what environment could it have happened and what happened before it. The developed approach allows us to shed light on many raised questions and to establish what universal laws and structures formed what happened before the Big Bang, to understand its cause and the dynamic processes that led to it. This required a radical revision of many views, giving them a new meaning and content. This approach has led to a consistent and conceptually new understanding of these phenomena, which allowed correctly formulate questions to which there are still no clear answers. Based on this formulation of the problem, we came to new ideas about the nature of Dark energy, Dark matter and the region of their birth, formulated and described the mechanism of the formation of worlds and their hierarchy on the other side of the Big Bang and the mechanism of this explosion itself. The Primary Parent Particle was introduced into the concept, which was the basis of everything and is the carrier of the fundamental Primary space introduced by us, which had at least two phase states. This particle consists of Beginnings united in the form of Borromeo rings. This made it possible to calculate the structure and primary spectrum of elementary particles that arose on the other side of the Big Bang, the mechanisms of their formation and the resulting fundamental interactions that lead to the existence of vortices before the Big Bang;the mechanisms of the birth of multiple universes and much more are also considered. The concept of the “cosmic genetic code" is introduced, the characteristics and mechanism of its formation before the Big Bang are presented.展开更多
In the present paper we consider the case of a Dirac field in a finite time domain and coupled to an external field. We decompose the field and its Hamiltonian in terms of creation and annihilation operators and path ...In the present paper we consider the case of a Dirac field in a finite time domain and coupled to an external field. We decompose the field and its Hamiltonian in terms of creation and annihilation operators and path integrate it via Grassmannian variables techniques. In that way we obtain its finite time domain Green function. We use it in the perturbative study of the interaction of Dirac particles with classical electromagnetic waves.展开更多
Structural distortions in nano-materials can induce dramatic changes in their electronic properties. This situation is well manifested in graphene, a two-dimensional honeycomb structure of carbon atoms with only one a...Structural distortions in nano-materials can induce dramatic changes in their electronic properties. This situation is well manifested in graphene, a two-dimensional honeycomb structure of carbon atoms with only one atomic layer thickness. In particular, strained graphene can result in both charging effects and pseudo-magnetic fields, so that controlled strain on a perfect graphene lattice can be tailored to yield desirable electronic properties. Here, we describe the theoretical foundation for strain-engineering of the electronic properties of graphene, and then provide experimental evidence for strain-induced pseudo-magnetic fields and charging effects in monolayer graphene. We further demonstrate the feasibility of nano-scale strain engineering for graphene-based devices by means of theoretical simulations and nano-fabrication technology.展开更多
文摘The radiation of black hole contributes to the shrinking of the event horizon such that the background spacetime should not be fixed. In this study we take into account the self-gravitation effect to study the radiation of Kerr Newman-Kasuya black hole as tunnelling. Using the facts of energy conservation and angular momentum conservation we derive the tunnelling rate and show that the spectrum of the radiation as tunnelling is not purely thermal.
文摘A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.
基金Project supported by the Chinese National Tian Yuan Science Foundation
文摘Let X= {x(t, ω), t≥0} be d(≥3)-dimensional Brownian motion on probability space (Ω, F, P) with values in Euclidean space R^d; B^d be the Borel σ-algebra in R^d. The transition probability density of X
文摘Quantum simulation is a powerful tool to study a variety of problems in physics, ranging from high-energy physics to condensed-matter physics. In this article, we review the recent theoretical and experimental progress in quantum simulation of Dirac equation with tunable parameters by using ultracold neutral atoms trapped in optical lattices or subject to light-induced synthetic gauge fields. The effective theories for the quasiparticles become relativistic under certain conditions in these systems, making them ideal platforms for studying the exotic relativistic effects. We focus on the realization of one, two, and three dimensional Dirac equations as well as the detection of some relativistic effects, including particularly the well-known Zitterbewegung effect and Klein tunneling. The realization of quantum anomalous Hall effects is also briefly discussed.
基金Project supported by the Hangdian Foundation (No. KYS075608072)the National Natural Science Foundation of China (Nos. 10671187, 10971109)the Program for New Century Excellent Talents in University of China (No. NCET-08-0515)
文摘An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is carried out for the super Dirac systems. Under the obtained symmetry constraint, the n-th flow of the super Dirac hierarchy is decomposed into two super finite-diinensional integrable Hamiltonian systems, defined over the super- symmetry manifold R^4N{2N with the corresponding dynamical variables x and tn. The integrals of motion required for Liouville integrability are explicitly given.
基金Supported by National Natural Science Foundation of China (10875053,10447005)Open Topic of State Key Laboratory for Superlattices and Microstructures (CHJG200902)Scientific Research Project in Shaanxi Province (2009K01-54)
文摘The Wigner function for the Dirac oscillator in spinor space is studied in this paper. Firstly, since the Dirac equation is described as a matrix equation in phase space, it is necessary to define the Wigner function as a matrix function in spinor space. Secondly, the matrix form of the Wigner function is proven to support the Dirac equation. Thirdly, by solving the Dirac equation, energy levels and the Wigner function for the Dirac oscillator in spinor space are obtained.
文摘By using the standard PMNS (Pontecorvo-Maki-Nakagawa-Sakata) mixing matrix and applying the rule for the sum of the oscillation probabilities of three neutrinos, the equations of motion were derived in which the Dirac CP violating phase appeared as an unknown quantity. The equations of motion were separately derived for each of the three possible transitions for flavor-neutrino oscillations. Two roots of those equations were obtained in the form of two formulas for the Dirac CP violating phase with opposite signs. In the mathematical sense, the connection between those formulas was established in order to maintain the continuous process of oscillation of three neutrinos. This made it possible to calculate the numerical value for the Dirac CP violating phase, the Jarlskog invariant and to write the general form of the PMNS mixing matrix in the final form in which all its elements are defined with explicit numerical values.
文摘We compare Newton’s force law of universal gravitation with a corrected simple approach based on Bhandari’s recently presented work, where the gravitation constant G is maintained. A reciprocity relation exists between both alternative gravity formulas with respect to the distances between mass centers. We conclude a one-to-one mapping of the two gravitational formulas. We don’t need Einstein’s construct of spacetime bending by matter.
基金the Natural Science Foundation of Shandong Province(No.ZR2021YQ04)Peng is grateful for the project funded by the China Postdoctoral Science Foundation(No.2022M712141)N.Ren acknowledges support from the National Natural Science Foundation of China(No.51972148)。
文摘Owing to the significant development in graphene,an increasing number of studies have been conducted to identify novel two-dimensional(2D)organic materials with Dirac cones and topological properties.Although a series of toy models based on specific lattice patterns has been proposed and demonstrated to possess a Dirac cone,realistic materials corresponding to the lattice models must be identified to achieve excellent properties for practical applications.To understand factors contributing to the rarity of 2D organic Dirac materials and provide guidance for identifying novel organic Dirac systems,we review recent theoretical studies pertaining to various 2D Dirac models and their corresponding organic Dirac materials,including the Haldane,Kagome,Libe,linecentered honeycomb,and Cairo pentagonal models.Subsequently,the corresponding structural and topological electronic properties are summarized.Additionally,we investigate the relationship between the existence of Dirac cones and their structural features,as well as the manner by which Dirac points emerge and propagate in these systems.
文摘By virtue of the new technique of performing integration over Dirac's ket-bra operators, we ex- plore quantum optical version of classical optical transformations such as optical Fresnel transform, Hankel transform, fractional Fourier transform, Wigner transform, wavelet transform and Fresnel- Hadmard combinatorial transform etc. In this way one may gain benefit for developing classical optics theory from the research in quantum optics, or vice-versa. We cannot only find some new quantum mechanical unitary operators which correspond to the known optical transformations, de- riving a new theorem for calculating quantum tomogram of density operators, but also can reveal some new classical optical transformations. For examples, we find the generalized Fresnel opera- tor (GFO) to correspond to the generalized Fresnel transform (GFT) in classical optics. We derive GFO's normal product form and its canonical coherent state representation and find that GFO is the loyal representation of symplectic group multiplication rule. We show that GFT is just the transformation matrix element of GFO in the coordinate representation such that two successive GFTs is still a GFT. The ABCD rule of the Gaussian beam propagation is directly demonstrated in the context of quantum optics. Especially, the introduction of quantum mechanical entangled state representations opens up a new area in finding new classical optical transformations. The complex wavelet transform and the condition of mother wavelet are studied in the context of quantum op- tics too. Throughout our discussions, the coherent state, the entangled state representation of the two-mode squeezing operators and the technique of integration within an ordered product (IWOP) of operators are fully used. All these have confirmed Dirac's assertion: "...for a quantum dynamic system that has a classical analogue, unitary transformation in the quantum theory is the analogue of contact transformation in the classical theory".
文摘In this work, we discuss the possibility to classify relativity in accordance with the classification of second order partial differential equations that have been applied into the formulation of physical laws in physics. In mathematics, since second order partial differential equations can be classified into hyperbolic, elliptic or parabolic type, therefore we show that it is also possible to classify relativity accordingly into hyperbolic, elliptic or parabolic type by establishing coordinate transformations that preserve the forms of these second order partial differential equations. The coordinate transformation that preserves the form of the hyperbolic equation is the Lorentz transformation and the associated space is the hyperbolic, or pseudo-Euclidean, relativistic spacetime. Typical equations in physics that comply with hyperbolic relativity are Maxwell and Dirac equations. The coordinate transformation that preserves the form of the elliptic equation is the modified Lorentz transformation that we have formulated in our work on Euclidean relativity and the associated space is the elliptic, or Euclidean, relativistic spacetime. As we will show in this work, equations that comply with elliptic relativity are the equations that describe the subfields of Maxwell and Dirac field. And the coordinate transformation that preserves the form of the parabolic equation is the Euclidean transformation consisting of the translation and rotation in the spatial space and the associated space is the parabolic relativistic spacetime, which is a Euclidean space with a universal time. Typical equations in physics that comply with parabolic relativity are the diffusion equation, the Schrödinger equation and in particular the diffusion equations that are derived from the four-current defined in terms of the differentiable structures of the spacetime manifold, and the Ricci flow.
文摘We investigate the spin and pseudospin symmetries of the Dirac equation under modified deformed Hylleraas potential via a Pekeris approximation and the Nikiforov-Uvarov technique. A tensor interaction of Coulomb form is considered and its degeneracy-removing role is discussed in detail. The solutions are reported for an arbitrary quantum number in a compact form and useful numerical data are included.
文摘Every four years the Committee on Data for Science and Technology (CODATA) supplies a self-consistent set of values of the basic constants and conversion factors of physics recommended for international use. In 2013, the World-Universe Model (WUM) proposed a principally different depiction of the World as an alternative to the picture of the Big Bang Model. This article: 1) Gives the short history of Classical Physics before Special Relativity;2) Calculates Fundamental Physical Constants based on experimentally measured Rydberg constant, Electrodynamic constant, Electron Charge-to-Mass Ratio, and Planck constant;3) Discusses Electrodynamic constant and Speed of Light;4) Considers Dimensionless Fundamental Parameters (Dirac Large Number Q and Dimensionless Rydberg Constant α);5) Calculates Newtonian Constant of Gravitation based on the Inter-connectivity of Primary Physical Parameters;6) Makes a detailed analysis of the Self-consistency of Fundamental Physical Constants and Primary Physical Parameters through the prism of WUM. The performed analysis suggests: 1) Discontinuing using the notion “Vacuum” and its characteristics (Speed of Light in Vacuum, Characteristic Impedance of Vacuum, Vacuum Magnetic Permeability, Vacuum Electric Permittivity);2) Accepting the exact numerical values of Electrodynamic constant, Planck constant, Elementary charge, and Dimensionless Rydberg Constant α. WUM recommends the predicted value of Newtonian Constant of Gravitation in 2018 to be considered in CODATA Recommend Values of the Fundamental Physical Constants 2022.
文摘When one function is defined as a differential operation on another function, it’s often desirable to invert the definition, to effectively “undo” the differentiation. A Green’s function approach is often used to accomplish this, but variations on this theme exist, and we examine a few such variations. The mathematical analysis of is sought in the form if such an inverse operator exists, but physics is defined by both mathematical formula and ontological formalism, as I show for an example based on the Dirac equation. Finally, I contrast these “standard” approaches with a novel exact inverse operator for field equations.
文摘The known equivalence of 8-dimensional chiral spinors and vectors, also referred to as triality, is discussed for (4 + 4)-space. Split octonionic representation of SO(4, 4) and Spin(4, 4) groups and the trilinear invariant form are explicitly written and compared with Clifford algebraic matrix representation. It is noted that the complete algebra of split octonionic basis units can be recovered from the Moufang and Malcev relations for the three vector-like elements. Lagrangians on split octonionic fields that generalize Dirac and Maxwell systems are constructed using group invariant forms. It is shown that corresponding equations are related to split octonionic analyticity conditions.
文摘In 1937, P. Dirac proposed the Large Number Hypothesis and the Hypothesis of the variable gravitational “constant”, and later added the notion of continuous creation of Matter in the World. The Hypersphere World-Universe Model (WUM) follows these ideas, albeit introducing a different mechanism of Matter creation. In this paper, we show that Gravitational parameter G that can be measured directly makes measurable all Cosmological parameters, which cannot be measured directly.
文摘In the present work, it will be shown that the dimensionless number 137 of the fine-structure constant α demands a quantization of space. For this purpose, we refer to a volume constant of electromagnetic processes, which takes effect as a volume quantum. This involves not only a re-evaluation of the Dirac equation but also, and above all, a determination of Einstein’s velocity vector as the fundamental property of these processes. A prerequisite is the linking of the hydrogen spectrum with the hydrogen nucleus.
文摘Taking the Big Bang as an established fact, the question inevitably arises about what exactly caused it, in what environment could it have happened and what happened before it. The developed approach allows us to shed light on many raised questions and to establish what universal laws and structures formed what happened before the Big Bang, to understand its cause and the dynamic processes that led to it. This required a radical revision of many views, giving them a new meaning and content. This approach has led to a consistent and conceptually new understanding of these phenomena, which allowed correctly formulate questions to which there are still no clear answers. Based on this formulation of the problem, we came to new ideas about the nature of Dark energy, Dark matter and the region of their birth, formulated and described the mechanism of the formation of worlds and their hierarchy on the other side of the Big Bang and the mechanism of this explosion itself. The Primary Parent Particle was introduced into the concept, which was the basis of everything and is the carrier of the fundamental Primary space introduced by us, which had at least two phase states. This particle consists of Beginnings united in the form of Borromeo rings. This made it possible to calculate the structure and primary spectrum of elementary particles that arose on the other side of the Big Bang, the mechanisms of their formation and the resulting fundamental interactions that lead to the existence of vortices before the Big Bang;the mechanisms of the birth of multiple universes and much more are also considered. The concept of the “cosmic genetic code" is introduced, the characteristics and mechanism of its formation before the Big Bang are presented.
文摘In the present paper we consider the case of a Dirac field in a finite time domain and coupled to an external field. We decompose the field and its Hamiltonian in terms of creation and annihilation operators and path integrate it via Grassmannian variables techniques. In that way we obtain its finite time domain Green function. We use it in the perturbative study of the interaction of Dirac particles with classical electromagnetic waves.
基金supported by the National Science Foundation under the Institute for Quantum Information and Matter at California Institute of Technology
文摘Structural distortions in nano-materials can induce dramatic changes in their electronic properties. This situation is well manifested in graphene, a two-dimensional honeycomb structure of carbon atoms with only one atomic layer thickness. In particular, strained graphene can result in both charging effects and pseudo-magnetic fields, so that controlled strain on a perfect graphene lattice can be tailored to yield desirable electronic properties. Here, we describe the theoretical foundation for strain-engineering of the electronic properties of graphene, and then provide experimental evidence for strain-induced pseudo-magnetic fields and charging effects in monolayer graphene. We further demonstrate the feasibility of nano-scale strain engineering for graphene-based devices by means of theoretical simulations and nano-fabrication technology.