Based on distribution of formation pressure by indirect estimation and formation testing,this study investigates origin of abnormal high pressure in the Dina 2 Gas Field in the Kuqa Depression in combination with the ...Based on distribution of formation pressure by indirect estimation and formation testing,this study investigates origin of abnormal high pressure in the Dina 2 Gas Field in the Kuqa Depression in combination with the latest research findings.Contribution of major overpressure mechanisms to this gas field is estimated,and generation of the abnormal high pressure as well as its relationship with natural gas accumulation is explored.Disequilibrium compaction,tectonic stress,and overpressure transfer are the major overpressure mechanisms.Overpressure transfer resulted from vertical opening of faults and folding is the most important cause for the overpressure.Gas accumulation and abnormal high pressure generation in the reservoirs of the Dina 2 Gas Field show synchroneity.During the early oil-gas charge in the Kangcun stage,the reservoirs were generally normal pressure systems.In the Kuqa deposition stage,rapid deposition caused disequilibrium compaction and led to generation of excess pressure(approximately 5-10 MPa)in the reservoirs.During the Kuqa Formation denudation stage to the Quaternary,reservoir overpressure was greatly increased to approximately 40-50 MPa as a result of vertical pressure transfer by episodic fault activation,lateral overpressure transfer by folding and horizontal tectonic stress due to intense tectonic compression.The last stage was the major period of ultra-high pressure generation and gas accumulation in the Dina 2 Gas Field.展开更多
To treat the relationship between project construction and ecological environment and effectively prevent new soil erosion during the construction, according to the project layout, soil erosion distribution as well as...To treat the relationship between project construction and ecological environment and effectively prevent new soil erosion during the construction, according to the project layout, soil erosion distribution as well as natural and socio-economic conditions, the control measures of newly increased soil erosion along the project were carried out based on site survey and analysis of relevant information. In addition, adhering to the prin- ciple of partition prevention and treatment, some guiding prevention and control measures of the natural zone passed by the project and soil erosion control district were determined, which provided scientific references and technical support for the rational layout of water and soil conservation and ecological restoration measures in Dina 2 gas field.展开更多
基金This work was funded by National Science and Technology Major Project of China(Grant No.2008ZX05003,2011ZX05003001).
文摘Based on distribution of formation pressure by indirect estimation and formation testing,this study investigates origin of abnormal high pressure in the Dina 2 Gas Field in the Kuqa Depression in combination with the latest research findings.Contribution of major overpressure mechanisms to this gas field is estimated,and generation of the abnormal high pressure as well as its relationship with natural gas accumulation is explored.Disequilibrium compaction,tectonic stress,and overpressure transfer are the major overpressure mechanisms.Overpressure transfer resulted from vertical opening of faults and folding is the most important cause for the overpressure.Gas accumulation and abnormal high pressure generation in the reservoirs of the Dina 2 Gas Field show synchroneity.During the early oil-gas charge in the Kangcun stage,the reservoirs were generally normal pressure systems.In the Kuqa deposition stage,rapid deposition caused disequilibrium compaction and led to generation of excess pressure(approximately 5-10 MPa)in the reservoirs.During the Kuqa Formation denudation stage to the Quaternary,reservoir overpressure was greatly increased to approximately 40-50 MPa as a result of vertical pressure transfer by episodic fault activation,lateral overpressure transfer by folding and horizontal tectonic stress due to intense tectonic compression.The last stage was the major period of ultra-high pressure generation and gas accumulation in the Dina 2 Gas Field.
文摘To treat the relationship between project construction and ecological environment and effectively prevent new soil erosion during the construction, according to the project layout, soil erosion distribution as well as natural and socio-economic conditions, the control measures of newly increased soil erosion along the project were carried out based on site survey and analysis of relevant information. In addition, adhering to the prin- ciple of partition prevention and treatment, some guiding prevention and control measures of the natural zone passed by the project and soil erosion control district were determined, which provided scientific references and technical support for the rational layout of water and soil conservation and ecological restoration measures in Dina 2 gas field.