This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-d...This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.展开更多
In this paper,we proposal stream surface and stream layer.By using classical tensor calculus,we derive 3-D Navier-Stokes Equations(NSE)in the stream layer under semigeodesic coordinate system,Navier-Stokes equation on...In this paper,we proposal stream surface and stream layer.By using classical tensor calculus,we derive 3-D Navier-Stokes Equations(NSE)in the stream layer under semigeodesic coordinate system,Navier-Stokes equation on the stream surface and 2-D Navier-Stokes equations on a two dimensional manifold. After introducing stream function on the stream surface,a nonlinear initial-boundary value problem satisfies by stream function is obtained,existence and uniqueness of its solution are proven.Based this theory we proposal a new method called"dimension split method"to solve 3D NSE.展开更多
基金supported by the National Natural Science Foundation of China (Grants 11571223, 51404160)Shanxi Province Science Foundation for Youths (Grant 2014021025-1)
文摘This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.
文摘In this paper,we proposal stream surface and stream layer.By using classical tensor calculus,we derive 3-D Navier-Stokes Equations(NSE)in the stream layer under semigeodesic coordinate system,Navier-Stokes equation on the stream surface and 2-D Navier-Stokes equations on a two dimensional manifold. After introducing stream function on the stream surface,a nonlinear initial-boundary value problem satisfies by stream function is obtained,existence and uniqueness of its solution are proven.Based this theory we proposal a new method called"dimension split method"to solve 3D NSE.