期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
关于Dirichlet L-函数加权均值的推广 被引量:1
1
作者 高丽 《周口师范学院学报》 CAS 2005年第5期8-10,17,共4页
利用Kloostermann和估计、特征和估计及其解析方法给出了DirichletL函数加权均值分布问题的一个推广,得到一个有趣的加权均值分布的渐近公式.
关键词 difichlet L-函数 Kloostermann和 均值分布 渐近公式
下载PDF
随机Dirichlet级数的级 被引量:3
2
作者 霍颖莹 孙道椿 《华南师范大学学报(自然科学版)》 CAS 2006年第4期32-35,共4页
构造了全平面上的无限级D irichlet级数,使得它对熊庆来型函数的级与一个已知的系数有不同分布随机D irichlet的几乎必然级相同,从而通过研究前者的级与系数的关系可研究后者的增长性.
关键词 随机difichlet级数 型函数
下载PDF
C_n(0,1)的Dirichlet边值问题 被引量:2
3
作者 刘芫健 《南京邮电学院学报(自然科学版)》 2005年第1期59-61,共3页
在Cn(0, 1)中的Schwarz积分公式是多复变函数的一个重要定理,通过引入积分算子给出了在Cn(0, 1)中Schwarz积分公式的另外一种递推证法,证明过程简洁且证明方法直接,最后在此基础上讨论了在Cn(0, 1)中两种典型的边值问题的解。
关键词 Cauchy公式 Schwarz积分公式 difichlet边值问题 Hilbea边值问题
下载PDF
在矩控制下B-值随机Dirichlet级数的(p,q)(R)级和(p,q)(R)型 被引量:2
4
作者 陆万春 王金莲 易才凤 《江西师范大学学报(自然科学版)》 CAS 北大核心 2005年第6期535-537,共3页
该文研究了在条件:0≤d2σ2n=d2E‖Zn‖2≤E2‖Zn‖<+∞下,在全平面上收敛的B-值随∞机Dirichlet级数的(p,q)(R)级和(p,q)(R)型,证明了B-值随机Dirichlet级数∑n=0Zn(ω)e-λnsa.s.与级数∑∞σne-λns具有相同的(p,q)(R)级和(p,q)(R... 该文研究了在条件:0≤d2σ2n=d2E‖Zn‖2≤E2‖Zn‖<+∞下,在全平面上收敛的B-值随∞机Dirichlet级数的(p,q)(R)级和(p,q)(R)型,证明了B-值随机Dirichlet级数∑n=0Zn(ω)e-λnsa.s.与级数∑∞σne-λns具有相同的(p,q)(R)级和(p,q)(R)型. 展开更多
关键词 B-值随机difichlet级数 (p g)(R)级 (p g)(R)型
下载PDF
3-调和函数的Dirichlet问题
5
作者 张燕 陈雪姣 《佳木斯大学学报(自然科学版)》 CAS 2012年第4期610-613,共4页
给出了3-调和函数的Dirichlet问题的一种解法,先通过多调和函数的弱分解定理将其转化为等价的2个独立的3-解析函数的Hilbert边值问题,再转化为等价的几个解析函数的Dirichlet问题来求解,得出了原问题解的存在唯一性定理.
关键词 3-调和函数 解析函数 DIRICHLET问题
下载PDF
具临界指数的一类椭圆方程
6
作者 唐林勇 肖辉成 《宜宾学院学报》 2007年第6期1-2,共2页
本文运用极小值原理给出了半线性椭圆方程-Δu=λ(x)u-|u|2*-2u+g(x,u)+h(x)(其中λ(x)∈[λ1,λk])的D irichlet问题解的存在性定理,这里次临界项g(x,u)关于u是非线性的.
关键词 半线性椭圆方程 SOBOLEV临界指数 difichlet问题 特征值 极小值原理
下载PDF
平面上有限级随机Dirichlet级数的亏函数
7
作者 罗仕乐 孙道椿 《华南师范大学学报(自然科学版)》 CAS 2007年第4期24-29,共6页
对平面上非常一般的随机Dirichlet级数的值分布进行了研究,通过共形映射把平面上的Dirichlet级数变换为单位圆内的解析函数,利用Nevalinna值分布理论对平面上有限级随机Dirichlet级数的亏函数进行了讨论,证明了有限级随机Dirichlet级数... 对平面上非常一般的随机Dirichlet级数的值分布进行了研究,通过共形映射把平面上的Dirichlet级数变换为单位圆内的解析函数,利用Nevalinna值分布理论对平面上有限级随机Dirichlet级数的亏函数进行了讨论,证明了有限级随机Dirichlet级数几乎必然没有亏函数. 展开更多
关键词 有限级 difichlet级数 随机级数 亏函数
下载PDF
Schrdinger算子第一特征值下界的估计
8
作者 王兰宁 黄振友 《南京邮电大学学报(自然科学版)》 2007年第6期81-84,共4页
给出了带Dirichlet边条件的Schrdinger算子问题-Δf+Wf=λff|Ω≡0第一特征值λ1下界的估计,即λ1≥π2/d2,其中ΩRn为有界光滑凸区域,d为Ω的直径,W:Ω→R为非负函数。
关键词 SCHRODINGER算子 第一特征值 difichlet边条件
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部