A new theory on the construction of optimal truncated Low-Dimensional Dynamical Systems (LDDSs) with different physical meanings has been developed, The physical properties of the optimal bases are reflected in the us...A new theory on the construction of optimal truncated Low-Dimensional Dynamical Systems (LDDSs) with different physical meanings has been developed, The physical properties of the optimal bases are reflected in the user-defined optimal conditions, Through the analysis of linear and nonlinear examples, it is shown that the LDDSs constructed by using the Proper Orthogonal Decomposition (POD) method are not the optimum. After comparing the errors of LDDSs based on the new theory POD and Fourier methods, it is concluded that the LDDSs based on the new theory are optimally truncated and catch the desired physical properties of the systems.展开更多
This paper considers a dynamical system defined by a set of ordinary autonomous differential equations with discontinuous right-hand side. Such systems typically appear in economic modelling where there are two or mor...This paper considers a dynamical system defined by a set of ordinary autonomous differential equations with discontinuous right-hand side. Such systems typically appear in economic modelling where there are two or more regimes with a switching between them. Switching between regimes may be a consequence of market forces or deliberately forced in form of policy implementation. Stiefenhofer and Giesl [1] introduce such a model. The purpose of this paper is to show that a metric function defined between two adjacent trajectories contracts in forward time leading to exponentially asymptotically stability of (non)smooth periodic orbits. Hence, we define a local contraction function and distribute it over the smooth and nonsmooth parts of the periodic orbits. The paper shows exponentially asymptotical stability of a periodic orbit using a contraction property of the distance function between two adjacent nonsmooth trajectories over the entire periodic orbit. Moreover it is shown that the ω-limit set of the (non)smooth periodic orbit for two adjacent initial conditions is the same.展开更多
研究时滞周期模型()()()(())()(())nn nx t v t x t x t ttx t t′+α?θ+?τ?τ=λ其中m、n是正整数,v(t),λ(t)是正周期函数,周期为ω,τ(t)为非负ω周期函数,获得方程存在一个正周期解的充分条件,推广改进了已有结果[Saker,Comput.Ma...研究时滞周期模型()()()(())()(())nn nx t v t x t x t ttx t t′+α?θ+?τ?τ=λ其中m、n是正整数,v(t),λ(t)是正周期函数,周期为ω,τ(t)为非负ω周期函数,获得方程存在一个正周期解的充分条件,推广改进了已有结果[Saker,Comput.Math.Appl.2002(44)623-632]。并举例说明了定理的应用。展开更多
基金The project supported by the National Natural Science Foundation of ChinaLNM,Institute of Mechanics,CAS
文摘A new theory on the construction of optimal truncated Low-Dimensional Dynamical Systems (LDDSs) with different physical meanings has been developed, The physical properties of the optimal bases are reflected in the user-defined optimal conditions, Through the analysis of linear and nonlinear examples, it is shown that the LDDSs constructed by using the Proper Orthogonal Decomposition (POD) method are not the optimum. After comparing the errors of LDDSs based on the new theory POD and Fourier methods, it is concluded that the LDDSs based on the new theory are optimally truncated and catch the desired physical properties of the systems.
文摘本文综述随机动力系统的基本概念、理论、方法与应用,内容包括Brownian运动、Lévy运动和随机微分方程及其解的刻画。重点讨论通过量化指标、不变结构、几何方法和非高斯性态来理解随机动力学现象。本文还介绍了段金桥的著作《An Introduction to Stochastic Dynamics(随机动力系统导论)》的基本内容。
文摘This paper considers a dynamical system defined by a set of ordinary autonomous differential equations with discontinuous right-hand side. Such systems typically appear in economic modelling where there are two or more regimes with a switching between them. Switching between regimes may be a consequence of market forces or deliberately forced in form of policy implementation. Stiefenhofer and Giesl [1] introduce such a model. The purpose of this paper is to show that a metric function defined between two adjacent trajectories contracts in forward time leading to exponentially asymptotically stability of (non)smooth periodic orbits. Hence, we define a local contraction function and distribute it over the smooth and nonsmooth parts of the periodic orbits. The paper shows exponentially asymptotical stability of a periodic orbit using a contraction property of the distance function between two adjacent nonsmooth trajectories over the entire periodic orbit. Moreover it is shown that the ω-limit set of the (non)smooth periodic orbit for two adjacent initial conditions is the same.
文摘研究时滞周期模型()()()(())()(())nn nx t v t x t x t ttx t t′+α?θ+?τ?τ=λ其中m、n是正整数,v(t),λ(t)是正周期函数,周期为ω,τ(t)为非负ω周期函数,获得方程存在一个正周期解的充分条件,推广改进了已有结果[Saker,Comput.Math.Appl.2002(44)623-632]。并举例说明了定理的应用。