The further electrification of various fields in production and daily life makes it a topic worthy of exploration to improve the performance of capacitors for a long time,including thin-film capacitors.The discharge e...The further electrification of various fields in production and daily life makes it a topic worthy of exploration to improve the performance of capacitors for a long time,including thin-film capacitors.The discharge energy density of thin-film capacitors that serves as one of the important types directly depends on electric field strength and the dielectric constant of the insulation material.However,it has long been a great challenge to improve the breakdown strength and dielectric constant simultaneously.Considering that boron nitride nanosheets(BNNS)possess superior insulation and thermal conductivity owing to wide band gap and 2-dimensional structure,a bilayer polymer film is prepared via coating BNNS by solution casting on surface of polyethylene terephthalate(PET)films.By revealing the bandgap and insulating behavior with UV absorption spectrum,leakage current,and finite element calculation,it is manifested that nanocoating contributes to enhance the bandgap of polymer films,thereby suppressing the charge injection by redirecting their transport from electrodes.Worthy to note that an ultrahigh breakdown field strength(~736 MV m^(−1)),an excellent discharge energy density(~8.77 J cm^(−3))and a prominent charge-discharge efficiency(~96.51%)are achieved concurrently,which is ascribed to the contribution of BNNS ultrathin layer.In addition,the modified PET films also have superior comprehensive performance at high temperatures(~120°C).The materials and methods here selected are easily accessible and facile,which are suitable for large-scale roll-to-roll process production,and are of certain significance to explore the methods about film modification suitable for commercial promotion.展开更多
This paper explores the possibility of realizing a hollow-core optical fiber, whose cladding is composed of cylindrical alternating layers of air and high-index material with supporting structure. The optical properti...This paper explores the possibility of realizing a hollow-core optical fiber, whose cladding is composed of cylindrical alternating layers of air and high-index material with supporting structure. The optical properties and the design criteria of the proposed fiber are evaluated by the compact two-dimensional (2D) finite-difference time-domain (FDTD) method. In particular, the influence of the number and width of supporting strips on the leakage loss of the fiber is investigated. Furthermore, the mechanical performances of the fiber are estimated by finite-element method, confirming that hollow-core fibers with a reasonable size and number of supporting strips are reliable.展开更多
Within the associated framework of metal-dielectric films optics and the dual-metal-mirror microcavity structure, the effect of a cladding dielectric layer on the light outcoupling efficiency of the top emitting orgai...Within the associated framework of metal-dielectric films optics and the dual-metal-mirror microcavity structure, the effect of a cladding dielectric layer on the light outcoupling efficiency of the top emitting orgainic light-emitting devices (OLEDs) is analyzed. A combined evaluation followed by detailed design and optimization is proposed and described in detail. The analysis shows that this cladding layer affects the device’s outcoupling efficiency with three different extents as the thickness of the metal layer in the multilayer cathode varying. The simulation results give a reasonable agreement with former experiment results.展开更多
In the twenty first century research works, there may be a need to achieve a more reliable research result through a synergy between engineers and biological researchers. The peak absorbance data for various interacti...In the twenty first century research works, there may be a need to achieve a more reliable research result through a synergy between engineers and biological researchers. The peak absorbance data for various interacting systems were measured. These were used to show that the antiretroviral drug has the effect of increasing the peak absorbance values of both the uninfected and infected blood components, i.e., the drugs are made able to increase the light absorption capacity of the blood cells. For drug 2 that contains three components including Efavirenz, the drug effect on lymphocytes was increased by about 38% for patients that had been on antiretroviral drug treatment. Mathematical models were proposed and used in determining the coating effectiveness of antiretroviral drugs in the presence and absence of HIV. The use of the findings of this work by pharmaceutical industries may help in the search for more effective antiretroviral drugs for the treatment of HIV patients.展开更多
Opening the silicon oxide mask of a capacitor in dynamic random access memory is a critical process on a capacitive coupled plasma(CCP)etch tool.Three steps,dielectric anti-reflective coating(DARC)etch back,silicon ox...Opening the silicon oxide mask of a capacitor in dynamic random access memory is a critical process on a capacitive coupled plasma(CCP)etch tool.Three steps,dielectric anti-reflective coating(DARC)etch back,silicon oxide etch and strip,are contained.To acquire good performance,such as low leakage current and high capacitance,for further fabricating capacitors,we should firstly optimize DARC etch back.We developed some experiments,focusing on etch time and chemistry,to evalu-ate the profile of a silicon oxide mask,DARC remain and critical dimension.The result shows that etch back time should be con-trolled in the range from 50 to 60 s,based on the current equipment and condition.It will make B/T ratio higher than 70%mean-while resolve the DARC remain issue.We also found that CH_(2)F_(2) flow should be~15 sccm to avoid reversed CD trend and keep in-line CD.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51937007,and 51921005)National Key Research and Development Program of China(No.2021YFB2401502).
文摘The further electrification of various fields in production and daily life makes it a topic worthy of exploration to improve the performance of capacitors for a long time,including thin-film capacitors.The discharge energy density of thin-film capacitors that serves as one of the important types directly depends on electric field strength and the dielectric constant of the insulation material.However,it has long been a great challenge to improve the breakdown strength and dielectric constant simultaneously.Considering that boron nitride nanosheets(BNNS)possess superior insulation and thermal conductivity owing to wide band gap and 2-dimensional structure,a bilayer polymer film is prepared via coating BNNS by solution casting on surface of polyethylene terephthalate(PET)films.By revealing the bandgap and insulating behavior with UV absorption spectrum,leakage current,and finite element calculation,it is manifested that nanocoating contributes to enhance the bandgap of polymer films,thereby suppressing the charge injection by redirecting their transport from electrodes.Worthy to note that an ultrahigh breakdown field strength(~736 MV m^(−1)),an excellent discharge energy density(~8.77 J cm^(−3))and a prominent charge-discharge efficiency(~96.51%)are achieved concurrently,which is ascribed to the contribution of BNNS ultrathin layer.In addition,the modified PET films also have superior comprehensive performance at high temperatures(~120°C).The materials and methods here selected are easily accessible and facile,which are suitable for large-scale roll-to-roll process production,and are of certain significance to explore the methods about film modification suitable for commercial promotion.
基金This work was supported by the National Natural Sci-ence Foundation of China under Grant No. 60444003 and 60577009.
文摘This paper explores the possibility of realizing a hollow-core optical fiber, whose cladding is composed of cylindrical alternating layers of air and high-index material with supporting structure. The optical properties and the design criteria of the proposed fiber are evaluated by the compact two-dimensional (2D) finite-difference time-domain (FDTD) method. In particular, the influence of the number and width of supporting strips on the leakage loss of the fiber is investigated. Furthermore, the mechanical performances of the fiber are estimated by finite-element method, confirming that hollow-core fibers with a reasonable size and number of supporting strips are reliable.
文摘Within the associated framework of metal-dielectric films optics and the dual-metal-mirror microcavity structure, the effect of a cladding dielectric layer on the light outcoupling efficiency of the top emitting orgainic light-emitting devices (OLEDs) is analyzed. A combined evaluation followed by detailed design and optimization is proposed and described in detail. The analysis shows that this cladding layer affects the device’s outcoupling efficiency with three different extents as the thickness of the metal layer in the multilayer cathode varying. The simulation results give a reasonable agreement with former experiment results.
文摘In the twenty first century research works, there may be a need to achieve a more reliable research result through a synergy between engineers and biological researchers. The peak absorbance data for various interacting systems were measured. These were used to show that the antiretroviral drug has the effect of increasing the peak absorbance values of both the uninfected and infected blood components, i.e., the drugs are made able to increase the light absorption capacity of the blood cells. For drug 2 that contains three components including Efavirenz, the drug effect on lymphocytes was increased by about 38% for patients that had been on antiretroviral drug treatment. Mathematical models were proposed and used in determining the coating effectiveness of antiretroviral drugs in the presence and absence of HIV. The use of the findings of this work by pharmaceutical industries may help in the search for more effective antiretroviral drugs for the treatment of HIV patients.
文摘Opening the silicon oxide mask of a capacitor in dynamic random access memory is a critical process on a capacitive coupled plasma(CCP)etch tool.Three steps,dielectric anti-reflective coating(DARC)etch back,silicon oxide etch and strip,are contained.To acquire good performance,such as low leakage current and high capacitance,for further fabricating capacitors,we should firstly optimize DARC etch back.We developed some experiments,focusing on etch time and chemistry,to evalu-ate the profile of a silicon oxide mask,DARC remain and critical dimension.The result shows that etch back time should be con-trolled in the range from 50 to 60 s,based on the current equipment and condition.It will make B/T ratio higher than 70%mean-while resolve the DARC remain issue.We also found that CH_(2)F_(2) flow should be~15 sccm to avoid reversed CD trend and keep in-line CD.