The emergent salt diapirs of the east Zagros, Iran have been investigated by their structural positions. The study area is including of Zagros orogeny belt and Persian Gulf that both of them have been formed on northe...The emergent salt diapirs of the east Zagros, Iran have been investigated by their structural positions. The study area is including of Zagros orogeny belt and Persian Gulf that both of them have been formed on northeastern part of Arabian plate. There are 84 emergent salt diapirs that originated from Hormuz formation with Infra-Cambrian to Cambrian age. Based on location, shape and orientation of the emergent salt domes in the east Zagros hinterland and Persian Gulf foreland basin, internal motivation forces in the salt deposits has been predominant compared to later tectonic forces. In the other words, most of the emergent salt diapirs are pre-orogenic diapirs and they had got prominent role as pines in determining the shape and location of next structures during to the Zagros orogeny. Finally, Neogene continental collision has a supplementary role to diapirism and salt reactivation. However there are an evidence to syn-orogenic emergent diapirs that they have got an important role in the progressive deformation.展开更多
Past fifty years have seen mounting publications on the genesis of volcanic arc magmas.While details remain debated,it is generally agreed that arc magmas result from slab-dehydration induced mantle wedge melting foll...Past fifty years have seen mounting publications on the genesis of volcanic arc magmas.While details remain debated,it is generally agreed that arc magmas result from slab-dehydration induced mantle wedge melting followed by crustal level differentiation of varying extent and sophistication.Two recent arc magma studies deserve particular attention because they attempt to discuss globally unifying controls on arc magma composition.Both Harvard study(Turner and Langmuir,2015a,b)and Rice study(Farner and Lee,2017)show correlations of arc magma composition with crustal thickness and both ascribe the crustal thickness as the principal control on their observed magma compositional variations,yet the physical role of the crustal thickness in their interpretations is markedly different because of(1)the ambiguous use of“crust”and(2)their different magma compositional ranges chosen in discussion.The Harvard study only uses basaltic samples corrected to MgO=6.0 wt.%to discuss mantle processes and interprets the arc crustal thickness as restricting the mantle wedge melting,i.e.,the extent of melting decreases with increasing crustal thickness.The Rice study uses samples of all compositions(basaltic to rhyolitic),whose extent of differentiation increases with increasing crustal thickness,interpreted as Moho-crossing mantle wedge melts travelling greater vertical distance with greater degree of cooling and erupting more evolved compositions above thicker crust than melts erupted above thinner crust without need of invoking mantle wedge processes.We commend these efforts and approve their different approaches but emphasize that the unifying understanding of global arc magmatism requires clearly defined Moho(the base of the crust)and LAB(the lithosphere-asthenosphere boundary)and their intrinsic controls on mantle wedge melting(Harvard Study model)and crustal level magma differentiation(Rice Study model)beneath global arcs.In this study,we use chemical compositions of 36,945 global arc volcanic samples provided by the Rice s展开更多
Our aim is to clarify mud volcanoes from the new mud diapirs resulting from the seismic attributes analysis applied to the low resolution Burmah oil “1973-1974” seismic data. The latter was carried out on the Larach...Our aim is to clarify mud volcanoes from the new mud diapirs resulting from the seismic attributes analysis applied to the low resolution Burmah oil “1973-1974” seismic data. The latter was carried out on the Larache and Tanger-Larache offshores from the NE-SW Atlantic margin. The high resolution seismic data was essential for this evaluation. In this case, we applied seismic signature analysis to four seismic profiles from the map of the seismic data set, which includes all new mud diapirs. This helped us to classify different types of mud diapirs within the seismic profiles. And as a result, six deep mud diapirs from the Prerifaine Nappe of Morocco, a shallow mud diapir, and four seafloor-piercing mud diapirs have been observed. Furthermore, the seafloor-piercing mud diapirs show a mushroom-shaped and conical-shaped cone. As they break through the seafloor, these kinds of cones characterize mud volcanoes. In this case, we may conclude that the resultant seafloor-piercing mud diapirs are likely to be mud volcanoes. However, more geological sampling and seafloor observation are still required.展开更多
Volcanic deposits from the lake Nyos contain ultramafic xenoliths: lherzolites, harzburgites and wehrlites, sometimes containing amphiboles and phlogopites. The lithospheric mantle beneath Nyos, as inferred from chemi...Volcanic deposits from the lake Nyos contain ultramafic xenoliths: lherzolites, harzburgites and wehrlites, sometimes containing amphiboles and phlogopites. The lithospheric mantle beneath Nyos, as inferred from chemical diagrams, has experienced partial melting and variably cryptic and modal metasomatism of the two groups of samples that have been distinguished: Group 1 samples are characterized by spoon-shaped REE patterns, and Group 2 samples show light (L) REE-enriched patterns. Metasomatic events were associated with pervasive infiltration of volatile (Ti, CO<sub>2</sub>, H<sub>2</sub>O) or alkali-rich small melts fractions and fluids. Later on, hydrous phases, Ti-rich Cpx, CaO-rich Ol, Ti-rich Ol, Cr poor and low values of NiO and F<sub>O</sub> (%) in wehrlite compared to other xenoliths, precipitated from alkali enrichments due to the percolation of the mantle by basaltic magmas. The metasomatic liquid which percolates the Nyos mantle column was a dense alkaline silicate rich in volatile, displaying low HFSE abundances in the metasomatic hydrous melts compared to the LILE. It is suggested that 1) cryptic metasomatism affected Group 1 samples, 2) the spinel-free wehrlite is a Group 2 sample corresponding to a cumulate of a similar melt and 3) amphibole may be a potassium-bearing mineral in addition to phlogopite at shallower levels of Nyos upper mantle. P-T estimated indicates that xenoliths were initially equilibrated in the garnet stability field, at depth of 85 Km, and then they were re-equilibrated in the spinel field owing to isobaric heating up to 1000℃. Adiabatic decompressions occur from 85 to 50 Km materialized by sample NK14 showing transitional porphyroclastic to equigranular texture and displaying pyroxene-Cr spinel symplectites, and from 50 to 30 Km corresponding to 8 - 18 Kbar, pressures in which most xenoliths were incorporated in the host lavas. Therefore, the presence of rising mantle plumes from 85 to 50 Km (sample NK14) and from 50 to 30 Km (all studied samples) is probably related to t展开更多
文摘The emergent salt diapirs of the east Zagros, Iran have been investigated by their structural positions. The study area is including of Zagros orogeny belt and Persian Gulf that both of them have been formed on northeastern part of Arabian plate. There are 84 emergent salt diapirs that originated from Hormuz formation with Infra-Cambrian to Cambrian age. Based on location, shape and orientation of the emergent salt domes in the east Zagros hinterland and Persian Gulf foreland basin, internal motivation forces in the salt deposits has been predominant compared to later tectonic forces. In the other words, most of the emergent salt diapirs are pre-orogenic diapirs and they had got prominent role as pines in determining the shape and location of next structures during to the Zagros orogeny. Finally, Neogene continental collision has a supplementary role to diapirism and salt reactivation. However there are an evidence to syn-orogenic emergent diapirs that they have got an important role in the progressive deformation.
基金started as a research project at Durham University by RABM(2018-2019)under the supervision of YNYN with RABM’s commentssupported by NSFC grant 91958215 and 111 Project(B18048).
文摘Past fifty years have seen mounting publications on the genesis of volcanic arc magmas.While details remain debated,it is generally agreed that arc magmas result from slab-dehydration induced mantle wedge melting followed by crustal level differentiation of varying extent and sophistication.Two recent arc magma studies deserve particular attention because they attempt to discuss globally unifying controls on arc magma composition.Both Harvard study(Turner and Langmuir,2015a,b)and Rice study(Farner and Lee,2017)show correlations of arc magma composition with crustal thickness and both ascribe the crustal thickness as the principal control on their observed magma compositional variations,yet the physical role of the crustal thickness in their interpretations is markedly different because of(1)the ambiguous use of“crust”and(2)their different magma compositional ranges chosen in discussion.The Harvard study only uses basaltic samples corrected to MgO=6.0 wt.%to discuss mantle processes and interprets the arc crustal thickness as restricting the mantle wedge melting,i.e.,the extent of melting decreases with increasing crustal thickness.The Rice study uses samples of all compositions(basaltic to rhyolitic),whose extent of differentiation increases with increasing crustal thickness,interpreted as Moho-crossing mantle wedge melts travelling greater vertical distance with greater degree of cooling and erupting more evolved compositions above thicker crust than melts erupted above thinner crust without need of invoking mantle wedge processes.We commend these efforts and approve their different approaches but emphasize that the unifying understanding of global arc magmatism requires clearly defined Moho(the base of the crust)and LAB(the lithosphere-asthenosphere boundary)and their intrinsic controls on mantle wedge melting(Harvard Study model)and crustal level magma differentiation(Rice Study model)beneath global arcs.In this study,we use chemical compositions of 36,945 global arc volcanic samples provided by the Rice s
文摘Our aim is to clarify mud volcanoes from the new mud diapirs resulting from the seismic attributes analysis applied to the low resolution Burmah oil “1973-1974” seismic data. The latter was carried out on the Larache and Tanger-Larache offshores from the NE-SW Atlantic margin. The high resolution seismic data was essential for this evaluation. In this case, we applied seismic signature analysis to four seismic profiles from the map of the seismic data set, which includes all new mud diapirs. This helped us to classify different types of mud diapirs within the seismic profiles. And as a result, six deep mud diapirs from the Prerifaine Nappe of Morocco, a shallow mud diapir, and four seafloor-piercing mud diapirs have been observed. Furthermore, the seafloor-piercing mud diapirs show a mushroom-shaped and conical-shaped cone. As they break through the seafloor, these kinds of cones characterize mud volcanoes. In this case, we may conclude that the resultant seafloor-piercing mud diapirs are likely to be mud volcanoes. However, more geological sampling and seafloor observation are still required.
文摘Volcanic deposits from the lake Nyos contain ultramafic xenoliths: lherzolites, harzburgites and wehrlites, sometimes containing amphiboles and phlogopites. The lithospheric mantle beneath Nyos, as inferred from chemical diagrams, has experienced partial melting and variably cryptic and modal metasomatism of the two groups of samples that have been distinguished: Group 1 samples are characterized by spoon-shaped REE patterns, and Group 2 samples show light (L) REE-enriched patterns. Metasomatic events were associated with pervasive infiltration of volatile (Ti, CO<sub>2</sub>, H<sub>2</sub>O) or alkali-rich small melts fractions and fluids. Later on, hydrous phases, Ti-rich Cpx, CaO-rich Ol, Ti-rich Ol, Cr poor and low values of NiO and F<sub>O</sub> (%) in wehrlite compared to other xenoliths, precipitated from alkali enrichments due to the percolation of the mantle by basaltic magmas. The metasomatic liquid which percolates the Nyos mantle column was a dense alkaline silicate rich in volatile, displaying low HFSE abundances in the metasomatic hydrous melts compared to the LILE. It is suggested that 1) cryptic metasomatism affected Group 1 samples, 2) the spinel-free wehrlite is a Group 2 sample corresponding to a cumulate of a similar melt and 3) amphibole may be a potassium-bearing mineral in addition to phlogopite at shallower levels of Nyos upper mantle. P-T estimated indicates that xenoliths were initially equilibrated in the garnet stability field, at depth of 85 Km, and then they were re-equilibrated in the spinel field owing to isobaric heating up to 1000℃. Adiabatic decompressions occur from 85 to 50 Km materialized by sample NK14 showing transitional porphyroclastic to equigranular texture and displaying pyroxene-Cr spinel symplectites, and from 50 to 30 Km corresponding to 8 - 18 Kbar, pressures in which most xenoliths were incorporated in the host lavas. Therefore, the presence of rising mantle plumes from 85 to 50 Km (sample NK14) and from 50 to 30 Km (all studied samples) is probably related to t