We present a method by which to determine the bulk viscosity of water from pulse duration measurements of stimulated Brillouin scattering (SBS). Beginning from a common model of Brillouin scattering, the bulk viscos...We present a method by which to determine the bulk viscosity of water from pulse duration measurements of stimulated Brillouin scattering (SBS). Beginning from a common model of Brillouin scattering, the bulk viscosity is shown to play an important role in Brillouin linewidth determination. Pulse durations of SBS back-reflected optical pulses are measured over the temperature range of 5-40℃. SBS linewidths are de- termined via Fourier transformation of the time-domain results, and the bulk viscosity of water is measured and derived from the obtained values. Our results show that the proposed method for measurement of pulse durations is an effective approach for determining bulk viscosity. The method can be easily extended to determine bulk viscosities of other Newtonian liquids.展开更多
Vitamin B12 is a type of vitamin also known by the name cobalamin. B12 is involved in many metabolism activities, including DNA synthesis, nervous system, red blood formation and immune system. Therefore, we chose the...Vitamin B12 is a type of vitamin also known by the name cobalamin. B12 is involved in many metabolism activities, including DNA synthesis, nervous system, red blood formation and immune system. Therefore, we chose the Differential Pulse Polarography (DPP) method is that has a high sensitivity for the determination of vitamin B12. This determination was possible with cobalt present in vitamin B12 structure. Since Co(III) is formed from the oxidation of the vitamin, its polarographic behavior had to be determined in various electrolytes such as acetate, borate, phosphate and ammonia. The polarograms of Co(III) were taken in these electrolytes in which 1.0 M NH3/ (pH = 9.8) and 1.0 M AcOH/AcO- (pH = 4.0) were found as the most suitable electrolytes. This method was successfully applied vitamin of B12 determination in a 1 mL ampoule with high precision. The LOD was found as 3.7 × 10-7 for instead of (S/N = 3). Besides Co(III), interference effects of Zn(II), Ni(II), Cr(III), Fe(III), Cu(II), Cd(II) and Se(IV) were also studied. It was found that only Zn(II) peak had an overlap Co(III) peak in ammonium buffer. This problem could be solved by working in 1.0 M AcOH/AcO- (pH = 4.0) buffer. B12, which is 1000 μg in 1 mL vitamin ampoule, was found for 4 measurements as 999 ± 15 μg as a result of 95% confidence interval.展开更多
Laser pulse nonlinear transmission measurements through saturable absorbers of known absorption parameters allow the measurement of their energy density. On the other hand, nonlinear transmission measurements of laser...Laser pulse nonlinear transmission measurements through saturable absorbers of known absorption parameters allow the measurement of their energy density. On the other hand, nonlinear transmission measurements of laser pulses of known energy density through absorbing media allow their absorption parameter determination. The peak energy density w0P of second harmonic pulses of a mode-locked titanium sapphire laser at wavelength λP = 400 nm is determined by nonlinear energy transmission measurement TE through the dye ADS084BE (1,4-bis(9-ethyl-3-car-bazovinylene)-2-methoxy-5-(2’-ethyl-hexyloxy)-benzene) in tetrahydrofuran. TE(w0P) calibration curves are calculated for laser pulse peak energy density reading w0P from measured pulse energy transmissions TE. The ground-state absorption cross-section σP and the excited-state absorption cross-section σex at λP, and the number density N0 of the retinal Schiff base isoform RetA in pH 7.4 buffer of the blue-light adapted recombinant rhodopsin fragment of the histidine kinase rhodopsin HKR1 from Chlamydomonas reinhardtii were determined by picosecond titanium sapphire second harmonic laser pulse energy transmission measurement TE through RetA as a function of laser input peak energy density w0P. The complete absorption cross-section spectrum展开更多
基金supported by the National Natural Sci-ence Foundation of China under Grants Nos.41206084 and 61177096
文摘We present a method by which to determine the bulk viscosity of water from pulse duration measurements of stimulated Brillouin scattering (SBS). Beginning from a common model of Brillouin scattering, the bulk viscosity is shown to play an important role in Brillouin linewidth determination. Pulse durations of SBS back-reflected optical pulses are measured over the temperature range of 5-40℃. SBS linewidths are de- termined via Fourier transformation of the time-domain results, and the bulk viscosity of water is measured and derived from the obtained values. Our results show that the proposed method for measurement of pulse durations is an effective approach for determining bulk viscosity. The method can be easily extended to determine bulk viscosities of other Newtonian liquids.
基金the Gazi University research fund for the financial support of this research.
文摘Vitamin B12 is a type of vitamin also known by the name cobalamin. B12 is involved in many metabolism activities, including DNA synthesis, nervous system, red blood formation and immune system. Therefore, we chose the Differential Pulse Polarography (DPP) method is that has a high sensitivity for the determination of vitamin B12. This determination was possible with cobalt present in vitamin B12 structure. Since Co(III) is formed from the oxidation of the vitamin, its polarographic behavior had to be determined in various electrolytes such as acetate, borate, phosphate and ammonia. The polarograms of Co(III) were taken in these electrolytes in which 1.0 M NH3/ (pH = 9.8) and 1.0 M AcOH/AcO- (pH = 4.0) were found as the most suitable electrolytes. This method was successfully applied vitamin of B12 determination in a 1 mL ampoule with high precision. The LOD was found as 3.7 × 10-7 for instead of (S/N = 3). Besides Co(III), interference effects of Zn(II), Ni(II), Cr(III), Fe(III), Cu(II), Cd(II) and Se(IV) were also studied. It was found that only Zn(II) peak had an overlap Co(III) peak in ammonium buffer. This problem could be solved by working in 1.0 M AcOH/AcO- (pH = 4.0) buffer. B12, which is 1000 μg in 1 mL vitamin ampoule, was found for 4 measurements as 999 ± 15 μg as a result of 95% confidence interval.
文摘Laser pulse nonlinear transmission measurements through saturable absorbers of known absorption parameters allow the measurement of their energy density. On the other hand, nonlinear transmission measurements of laser pulses of known energy density through absorbing media allow their absorption parameter determination. The peak energy density w0P of second harmonic pulses of a mode-locked titanium sapphire laser at wavelength λP = 400 nm is determined by nonlinear energy transmission measurement TE through the dye ADS084BE (1,4-bis(9-ethyl-3-car-bazovinylene)-2-methoxy-5-(2’-ethyl-hexyloxy)-benzene) in tetrahydrofuran. TE(w0P) calibration curves are calculated for laser pulse peak energy density reading w0P from measured pulse energy transmissions TE. The ground-state absorption cross-section σP and the excited-state absorption cross-section σex at λP, and the number density N0 of the retinal Schiff base isoform RetA in pH 7.4 buffer of the blue-light adapted recombinant rhodopsin fragment of the histidine kinase rhodopsin HKR1 from Chlamydomonas reinhardtii were determined by picosecond titanium sapphire second harmonic laser pulse energy transmission measurement TE through RetA as a function of laser input peak energy density w0P. The complete absorption cross-section spectrum