在河西走廊中部,采用挖掘法挖取红砂和白刺根系,应用拓扑学与分形理论分析了根系构型的特征.结果表明:2种荒漠植物根系的拓扑指数均较小,根系分支模式均近似为叉状分支结构.红砂和白刺根系具有较好的分形特征,其分形维数分别为(1.18...在河西走廊中部,采用挖掘法挖取红砂和白刺根系,应用拓扑学与分形理论分析了根系构型的特征.结果表明:2种荒漠植物根系的拓扑指数均较小,根系分支模式均近似为叉状分支结构.红砂和白刺根系具有较好的分形特征,其分形维数分别为(1.18±0.04)和(1.36±0.06);分形维数、分形丰度与根系平均连接长度均呈显著正相关.2种荒漠植物根系的平均连接长度均较大,以扩大植物的有效营养空间,从而适应干旱贫瘠的土壤环境.2种荒漠植物根系分支前的横截面积等于根系分支后的横截面积之和,验证了Leonardo da Vinci法则.对17个根系构型参数进行主成分分析,根系拓扑指数、根系连接数量、逐步分支率和根系直径4个根系构型参数能很好地表示2种荒漠植物根系构型特征.展开更多
Leaves of 407 individuals of Reaumuria soongorica (Pall.) Maxim. collected from the major distribution areas were measured to investigate the distribution characteristics of the stable carbon isotope in this desert ...Leaves of 407 individuals of Reaumuria soongorica (Pall.) Maxim. collected from the major distribution areas were measured to investigate the distribution characteristics of the stable carbon isotope in this desert plant, as well as correlations between δ^13C values and environmental factors. Results showed that δ^13C values in R. soongorica ranged from -22.77‰ to -29.85‰ and that the mean δ^13C value (-26.52‰) was higher than a previously reported δ^13C value for a different desert ecosystem. This indicates that R. soongorica belongs to the C3 photosynthetic pathway and has higher water use efficiency than other species. The correlations between δ^13C values and environmental factors demonstrated that the foliar δ^13C values in R. soongorica increased significantly with decreasing mean annual precipitation and mean relative humidity, and decreased with decreasing duration of sunshine and evaporation. The spatial distribution trend of δ^13C values in R. soongorica was not obvious and there was no significant correlation between the δ^13C values and mean annual temperature. We conclude that different distribution trends in δ^13C values for R. soongorica were likely caused by stomatal limitation rather than by nutrient-related changes in photosynthetic efficiency and that precipitation played an important role in the wide distribution range of R. soongorica. This pattern of δ^13C values for R. soongorica reinforced that it is a super-xerophil in terms of its adaptive strategies to a desert environment.展开更多
文摘在河西走廊中部,采用挖掘法挖取红砂和白刺根系,应用拓扑学与分形理论分析了根系构型的特征.结果表明:2种荒漠植物根系的拓扑指数均较小,根系分支模式均近似为叉状分支结构.红砂和白刺根系具有较好的分形特征,其分形维数分别为(1.18±0.04)和(1.36±0.06);分形维数、分形丰度与根系平均连接长度均呈显著正相关.2种荒漠植物根系的平均连接长度均较大,以扩大植物的有效营养空间,从而适应干旱贫瘠的土壤环境.2种荒漠植物根系分支前的横截面积等于根系分支后的横截面积之和,验证了Leonardo da Vinci法则.对17个根系构型参数进行主成分分析,根系拓扑指数、根系连接数量、逐步分支率和根系直径4个根系构型参数能很好地表示2种荒漠植物根系构型特征.
文摘Leaves of 407 individuals of Reaumuria soongorica (Pall.) Maxim. collected from the major distribution areas were measured to investigate the distribution characteristics of the stable carbon isotope in this desert plant, as well as correlations between δ^13C values and environmental factors. Results showed that δ^13C values in R. soongorica ranged from -22.77‰ to -29.85‰ and that the mean δ^13C value (-26.52‰) was higher than a previously reported δ^13C value for a different desert ecosystem. This indicates that R. soongorica belongs to the C3 photosynthetic pathway and has higher water use efficiency than other species. The correlations between δ^13C values and environmental factors demonstrated that the foliar δ^13C values in R. soongorica increased significantly with decreasing mean annual precipitation and mean relative humidity, and decreased with decreasing duration of sunshine and evaporation. The spatial distribution trend of δ^13C values in R. soongorica was not obvious and there was no significant correlation between the δ^13C values and mean annual temperature. We conclude that different distribution trends in δ^13C values for R. soongorica were likely caused by stomatal limitation rather than by nutrient-related changes in photosynthetic efficiency and that precipitation played an important role in the wide distribution range of R. soongorica. This pattern of δ^13C values for R. soongorica reinforced that it is a super-xerophil in terms of its adaptive strategies to a desert environment.