The current research progresses and problems of the semantic Web are analyzed in this paper, and the insufficiency of using description logic to act as logical foundation for the semantic Web is analyzed too. Accordin...The current research progresses and problems of the semantic Web are analyzed in this paper, and the insufficiency of using description logic to act as logical foundation for the semantic Web is analyzed too. According to the characteristics and requirement of the semantic Web, a kind of new dynamic description logic (DDL) framework is presented. The representation and reasoning of static knowledge and dynamic knowledge are integrated in this framework. Especially, a kind of action description method is proposed, and according to description logic theory, the action semantics is described, so DDL is a kind of formal logical framework which can process static knowledge and dynamic knowledge. The DDL has clear and formally defined semantics. It provides decidable reasoning services, and it can support effective representation and reasoning of the static knowledge, dynamic process and running mechanism (realization and subsumption relation of action). Therefore, the DDL provides reasonable logic foundation for the semantic Web, and overcomes the insufficiency of using description logic to act as logical foundation for the semantic Web.展开更多
The structure of fractures in nature rock appears irregular and induces complicated seepage flow behavior.The mechanism and quantitative description of fluid flow through rock fractures is a difficult subject that has...The structure of fractures in nature rock appears irregular and induces complicated seepage flow behavior.The mechanism and quantitative description of fluid flow through rock fractures is a difficult subject that has been greatly concerned in the fields of geotechnical,mining,geological,and petroleum engineering.In order to probe the mechanism of fluid flow and the effects of rough structures,we conducted a few laboratory tests of fluid flow through single rough fractures,in which the Weierstrass-Mandelbrot fractal function and PMMA material were employed to produce the fracture models with various fractal roughnesses.A high-speed video camera was employed to record the fluid flow through the entire single rough fracture with a constant hydraulic pressure.The properties of fluid flow varying with the fracture roughness and the influences of the rough structure were analyzed.The components of flow resistance of a single rough fracture were discussed.A fractal model was proposed to relate the fluid resistance to the fracture roughness.A fractal equivalent permeability coefficient of a single rough fracture was formulated.This study aims to provide an experimental basis and reference for better understanding and quantitatively relating the fluid flow properties to the structures of rock fractures.展开更多
Quantitative description of desorption stages of coalbed methane is an important basis to objectively understand the production of coalbed methane well,to diagnose the production state,and to optimize the management o...Quantitative description of desorption stages of coalbed methane is an important basis to objectively understand the production of coalbed methane well,to diagnose the production state,and to optimize the management of draining and collection of coalbed methane.A series of isothermal adsorption experiments were carried out with 12 anthracite samples from 6 coalbed methane wells located in the south of the Qinshui Basin,based on the results of isothermal adsorption experiments,and an analytical model was developed based on the Langmuir sorption theory.With the model,a numerical method that adopts equivalent desorption rate and its curve was established,which can be used to characterize the staged desorption of coalbed methane.According to the experimental and numerical characterizations,three key pressure points determined by the equivalent desorption rate curvature that defines pressure-declining desorption stage,have been proposed and confirmed,namely,start-up pressure,transition pressure and sensitive pressure.By using these three key pressure points,the process of coalbed methane desorption associated with isothermal adsorption experiments can be divided into four stages,i.e.,zero desorption stage,slow desorption stage,transition desorption stage,and sensitive desorption stage.According to analogy analysis,there are differences and similarities between the processes of coalbed methane desorption identified by isothermal adsorption experiments and observed in gas production.Moreover,it has been found that larger Langmuir volume and ratio of Langmuir constants are beneficial to earlier advent of steady production stage,whereas it is also possible that the declining production stage may occur ahead of schedule.展开更多
基金This work was supported by the 863 High Tech Programme(Grant No.2001AA113121)the National Natural Science Foundation of China(Grant No.90104021).
文摘The current research progresses and problems of the semantic Web are analyzed in this paper, and the insufficiency of using description logic to act as logical foundation for the semantic Web is analyzed too. According to the characteristics and requirement of the semantic Web, a kind of new dynamic description logic (DDL) framework is presented. The representation and reasoning of static knowledge and dynamic knowledge are integrated in this framework. Especially, a kind of action description method is proposed, and according to description logic theory, the action semantics is described, so DDL is a kind of formal logical framework which can process static knowledge and dynamic knowledge. The DDL has clear and formally defined semantics. It provides decidable reasoning services, and it can support effective representation and reasoning of the static knowledge, dynamic process and running mechanism (realization and subsumption relation of action). Therefore, the DDL provides reasonable logic foundation for the semantic Web, and overcomes the insufficiency of using description logic to act as logical foundation for the semantic Web.
基金supported by the National Science Funds for Distinguished Young Scholar of China (Grant No. 51125017)the National Basic Research Program of China (Grant Nos. 2010CB226804,2011CB201201)+2 种基金the National Natural Science Foundation of China (Grant No. 50974125)the International Cooperation Project of Ministry of Science & Technology of China (Grant No. 2012DFA60760-2)NSFC International Cooperation and Exchange Program (Grant No. 51120145001)
文摘The structure of fractures in nature rock appears irregular and induces complicated seepage flow behavior.The mechanism and quantitative description of fluid flow through rock fractures is a difficult subject that has been greatly concerned in the fields of geotechnical,mining,geological,and petroleum engineering.In order to probe the mechanism of fluid flow and the effects of rough structures,we conducted a few laboratory tests of fluid flow through single rough fractures,in which the Weierstrass-Mandelbrot fractal function and PMMA material were employed to produce the fracture models with various fractal roughnesses.A high-speed video camera was employed to record the fluid flow through the entire single rough fracture with a constant hydraulic pressure.The properties of fluid flow varying with the fracture roughness and the influences of the rough structure were analyzed.The components of flow resistance of a single rough fracture were discussed.A fractal model was proposed to relate the fluid resistance to the fracture roughness.A fractal equivalent permeability coefficient of a single rough fracture was formulated.This study aims to provide an experimental basis and reference for better understanding and quantitatively relating the fluid flow properties to the structures of rock fractures.
基金supported by National KeyBasic Research Program of China (Grant No. 2009CB219605)Key Project of National Natural Science Foundation of China (Grant No.40730422)Grand Science and Technology Special Project of China(Grant No. 2011ZX05034-04)
文摘Quantitative description of desorption stages of coalbed methane is an important basis to objectively understand the production of coalbed methane well,to diagnose the production state,and to optimize the management of draining and collection of coalbed methane.A series of isothermal adsorption experiments were carried out with 12 anthracite samples from 6 coalbed methane wells located in the south of the Qinshui Basin,based on the results of isothermal adsorption experiments,and an analytical model was developed based on the Langmuir sorption theory.With the model,a numerical method that adopts equivalent desorption rate and its curve was established,which can be used to characterize the staged desorption of coalbed methane.According to the experimental and numerical characterizations,three key pressure points determined by the equivalent desorption rate curvature that defines pressure-declining desorption stage,have been proposed and confirmed,namely,start-up pressure,transition pressure and sensitive pressure.By using these three key pressure points,the process of coalbed methane desorption associated with isothermal adsorption experiments can be divided into four stages,i.e.,zero desorption stage,slow desorption stage,transition desorption stage,and sensitive desorption stage.According to analogy analysis,there are differences and similarities between the processes of coalbed methane desorption identified by isothermal adsorption experiments and observed in gas production.Moreover,it has been found that larger Langmuir volume and ratio of Langmuir constants are beneficial to earlier advent of steady production stage,whereas it is also possible that the declining production stage may occur ahead of schedule.