Congestion of transmission line is a vital issue and its management pose a technical challenge in power system deregulation. Congestion occurs in deregulated electricity market when transmission capacity is not suffic...Congestion of transmission line is a vital issue and its management pose a technical challenge in power system deregulation. Congestion occurs in deregulated electricity market when transmission capacity is not sufficient to simultaneously accommodate all constraints of power transmission through a line. Therefore, to manage congestion, a locational marginal price (LMP) based zonal congestion management approach in a deregulated elec- tricity market has been proposed in this paper. As LMP is an economic indicator and its difference between two buses across a transmission line provides the measure of the degree of congestion, therefore, it is efficiently and reliably used in deregulated electricity market for conges- tion management. This paper utilizes the difference of LMP across a transmission line to categorize various congestion zones in the system. After the identification of congestion zones, distributed generation is optimally placed in most congestion sensitive zones using LMP difference in order to manage congestion. The performance of the proposed methodology has been tested on the IEEE 14-bus system and IEEE 57-bus system.展开更多
In this paper, the impact of the wind power generation system on the total cost and profit of the system is studied by using the proposed procedure of binary Sine Cosine (BSC) optimization algorithm with optimal prior...In this paper, the impact of the wind power generation system on the total cost and profit of the system is studied by using the proposed procedure of binary Sine Cosine (BSC) optimization algorithm with optimal priority list (OPL) algorithm. As well, investigate the advantages of system transformation from a regulated system to a deregulated system and the difference in the objective functions of the two systems. The suggested procedure is carried out in two parallel algorithms;The goal of the first algorithm is to reduce the space of searching by using OPL, while the second algorithm adjusts BSC to get the optimal economic dispatch with minimum operation cost of the unit commitment (UCP) problem in the regulated system. But, in the deregulated system, the second algorithm adopts the BSC technique to find the optimal solution to the profit-based unit commitment problem (PBUCP), through the fast of researching the BSC technique. The proposed procedure is applied to IEEE 10-unit test system integrated with the wind generator system. While the second is an actual system in the Egyptian site at Hurghada. The results of this algorithm are compared with previous literature to illustrate the efficiency and capability of this algorithm. Based on the results obtained in the regulated system, the suggested procedure gives better results than the algorithm in previous literature, saves computational efforts, and increases the efficiency of the output power of each unit in the system and lowers the price of kWh. Besides, in the deregulated system the profit is high and the system is more reliable.展开更多
Integration and management of the flexibility of Demand Side Resources (DSR) in today’s energy systems plays a significant role in building up a sustainable society. However, the challenges of understanding, predicat...Integration and management of the flexibility of Demand Side Resources (DSR) in today’s energy systems plays a significant role in building up a sustainable society. However, the challenges of understanding, predicating and handling the uncertainties associated this subject to a great extent hamper its development. In this paper, an analytical framework based on a multi-portfolio setup in presence of a deregulated power market is proposed to address such challenges by adopting the thinking in modern portfolio theory (MPT). A Numerical example that targets on analyzing the risk and return for various flexibility pricing strategies are presented to illustrate some features of the framework.展开更多
This paper presents the analysis of load frequency control (LFC) of a deregulated two-area hydro-thermal power system using fuzzy logic controller, with doubly fed induction generators (DFIGs) integrated into both...This paper presents the analysis of load frequency control (LFC) of a deregulated two-area hydro-thermal power system using fuzzy logic controller, with doubly fed induction generators (DFIGs) integrated into both the control areas. The deregulation of power sector has led to the formation of new companies for generation, transmission and distribution of power. The conventional two-area power system is modified to study the effects of the bilateral contracts of companies on the system dynamics. Deregulation creates highly competitive and distributed control environment, and the LFC becomes even more challenging when wind generators are also integrated into the system. The overall inertia of the system reduces, as the wind unit does not provide inertia and isolates from the grid during disturbances. The DFIGs integrated provide inertial support to the system through modified inertial control scheme, and arrests the initial fall in frequency after disturbance. The inertial control responds to frequency deviations, which takes out the kinetic energy of the wind turbine for improving the frequency response of the system. To enhance the participation of the doubly fed induction generator (DFIG) in the frequency control, optimal values of the speed control parameters of the DFIG-based wind turbine have been obtained using integral square error (ISE) technique. The dynamics of the system have been obtained for a small load perturbation, and for contract violation using fuzzy controller.展开更多
In the United States, emission regulations are enacted at a state level;individual states are allowed to define what methods they will use to mitigate their carbon emissions. The consequence of this is especially inte...In the United States, emission regulations are enacted at a state level;individual states are allowed to define what methods they will use to mitigate their carbon emissions. The consequence of this is especially interesting in the state of Texas where new legislation has created a “deregulated” electricity market in which end-users are capable of choosing their electricity provider and subsequently the type of electricity they wish to consume (generated by fossil fuels or renewable sources). In this paper we analyze the effects of carbon tax on the development of renewable generation capacity at the utility level while taking into account expected adoption of rooftop PV systems by individual consumers using agent based modeling techniques. Monte Carlo simulations show carbon abatement trends and proffer updated renewable portfolio standards at various levels of likelihood.展开更多
This paper is intended in investigating the Automatic Generation Control (AGC) problem of a deregulated power system using Adaptive Neuro Fuzzy controller. Here, three area control structure of Hydro-Thermal generatio...This paper is intended in investigating the Automatic Generation Control (AGC) problem of a deregulated power system using Adaptive Neuro Fuzzy controller. Here, three area control structure of Hydro-Thermal generation has been considered for different contracted scenarios under diverse operating conditions with non-linearities such as Generation Rate Constraint (GRC) and Backlash. In each control area, the effects of the feasible contracts are treated as a set of new input signals in a modified traditional dynamical model. The key benefit of this strategy is its high insensitivity to large load changes and disturbances in the presence of plant parameter discrepancy and system nonlinearities. This newly developed scheme leads to a flexible controller with a simple structure that is easy to realize and consequently it can be constructive for the real world power system. The results of the proposed controller are evaluated with the Hybrid Particle Swarm Optimisation (HCPSO), Real Coded Genetic Algorithm (RCGA) and Artificial Neural Network (ANN) controllers to illustrate its robustness.展开更多
This paper proposes a novel price based load frequency control scheme for a two area system, using an Unscheduled Interchange (UI) price signal, which is ideal and suitable for electricity market. The Government of In...This paper proposes a novel price based load frequency control scheme for a two area system, using an Unscheduled Interchange (UI) price signal, which is ideal and suitable for electricity market. The Government of India has introduced Availability Based Tariff (ABT) structure with an intention of ensuring grid security and to regulate grid indiscipline through Central Electricity Regulatory Commission Regulation. After the introduction of this regulation, the over or under injection by the generating companies (GENCOs) during off peak or peak hours are demoralized and the frequency is maintained at the nominal value. In this paper, the GENCOs instead of reacting to this price signal manually, an automated mode of frequency control is deployed in each area using UI price signal to achieve fast response to load change. The Distribution Company (DISCO) Participation Matrix (DPM) has also been employed in this work to relate the scenario under deregulation of electricity market. The proposed scheme has been verified for different cases by simulating it on a two area system, each having four GENCOs and one DISCO in MATLAB/SIMULINK environment. From the results, it is clearly observed that if the proposed method is employed by all GENCOs, it will certainly enhance the control of system frequency and at the same time throw down the UI liability of market participants. It also ensures that the GENCOs and DISCOs strictly adhere to the bilateral contract following the DISCO participation matrix.展开更多
With maturing deregulated environment for electricity market, cost of transmission congestion becomes a major issue for power system operation. Uniform Marginal Price and Locational Marginal Price (LMP) are the two pr...With maturing deregulated environment for electricity market, cost of transmission congestion becomes a major issue for power system operation. Uniform Marginal Price and Locational Marginal Price (LMP) are the two practical pricing schemes on energy pricing and congestion cost allocation, which are based on different mechanisms. In this paper, these two pricing schemes are introduced in detail respectively. Also, the modified IEEE-14-bus system is used as a test system to calculate the allocated congestion cost by using these two pricing schemes.展开更多
Congestion is the prime cause of problems, due to open access of power system. The AC Power Transmission Congestion Distribution factor (PTCDF) is suitable for computing change in any line quantity for a change in MW ...Congestion is the prime cause of problems, due to open access of power system. The AC Power Transmission Congestion Distribution factor (PTCDF) is suitable for computing change in any line quantity for a change in MW bilateral transaction. The proposed PTCDF method is more accurate as compared to the DC power distribution factor. With PTCDF ATC can be calculated. After calculating ATC it is possible to know the valid multiple transaction on power system. With the help of ATC calculations congestion problem can be solved in restructured electrical power network. The paper presents the method for calculating ATC using PTCDF.展开更多
Particle swarm optimization(PSO)is one of the popular stochastic optimization based on swarm intelligence algorithm.This simple and promising algorithm has applications in many research fields.In PSO,each particle can...Particle swarm optimization(PSO)is one of the popular stochastic optimization based on swarm intelligence algorithm.This simple and promising algorithm has applications in many research fields.In PSO,each particle can adjust its‘flying’according to its own flying experience and its companions’flying experience.This paper proposes a new PSO variant,called the statistically tracked PSO,which uses group statistical characteristics to update the velocity of the particle after certain iterations,thus avoiding localminima and helping particles to explore global optimum with an improved convergence.The performance of the proposed algorithm is tested on a deregulated automatic generation control problem in power systems and encouraging results are obtained.展开更多
文摘Congestion of transmission line is a vital issue and its management pose a technical challenge in power system deregulation. Congestion occurs in deregulated electricity market when transmission capacity is not sufficient to simultaneously accommodate all constraints of power transmission through a line. Therefore, to manage congestion, a locational marginal price (LMP) based zonal congestion management approach in a deregulated elec- tricity market has been proposed in this paper. As LMP is an economic indicator and its difference between two buses across a transmission line provides the measure of the degree of congestion, therefore, it is efficiently and reliably used in deregulated electricity market for conges- tion management. This paper utilizes the difference of LMP across a transmission line to categorize various congestion zones in the system. After the identification of congestion zones, distributed generation is optimally placed in most congestion sensitive zones using LMP difference in order to manage congestion. The performance of the proposed methodology has been tested on the IEEE 14-bus system and IEEE 57-bus system.
文摘In this paper, the impact of the wind power generation system on the total cost and profit of the system is studied by using the proposed procedure of binary Sine Cosine (BSC) optimization algorithm with optimal priority list (OPL) algorithm. As well, investigate the advantages of system transformation from a regulated system to a deregulated system and the difference in the objective functions of the two systems. The suggested procedure is carried out in two parallel algorithms;The goal of the first algorithm is to reduce the space of searching by using OPL, while the second algorithm adjusts BSC to get the optimal economic dispatch with minimum operation cost of the unit commitment (UCP) problem in the regulated system. But, in the deregulated system, the second algorithm adopts the BSC technique to find the optimal solution to the profit-based unit commitment problem (PBUCP), through the fast of researching the BSC technique. The proposed procedure is applied to IEEE 10-unit test system integrated with the wind generator system. While the second is an actual system in the Egyptian site at Hurghada. The results of this algorithm are compared with previous literature to illustrate the efficiency and capability of this algorithm. Based on the results obtained in the regulated system, the suggested procedure gives better results than the algorithm in previous literature, saves computational efforts, and increases the efficiency of the output power of each unit in the system and lowers the price of kWh. Besides, in the deregulated system the profit is high and the system is more reliable.
文摘Integration and management of the flexibility of Demand Side Resources (DSR) in today’s energy systems plays a significant role in building up a sustainable society. However, the challenges of understanding, predicating and handling the uncertainties associated this subject to a great extent hamper its development. In this paper, an analytical framework based on a multi-portfolio setup in presence of a deregulated power market is proposed to address such challenges by adopting the thinking in modern portfolio theory (MPT). A Numerical example that targets on analyzing the risk and return for various flexibility pricing strategies are presented to illustrate some features of the framework.
文摘This paper presents the analysis of load frequency control (LFC) of a deregulated two-area hydro-thermal power system using fuzzy logic controller, with doubly fed induction generators (DFIGs) integrated into both the control areas. The deregulation of power sector has led to the formation of new companies for generation, transmission and distribution of power. The conventional two-area power system is modified to study the effects of the bilateral contracts of companies on the system dynamics. Deregulation creates highly competitive and distributed control environment, and the LFC becomes even more challenging when wind generators are also integrated into the system. The overall inertia of the system reduces, as the wind unit does not provide inertia and isolates from the grid during disturbances. The DFIGs integrated provide inertial support to the system through modified inertial control scheme, and arrests the initial fall in frequency after disturbance. The inertial control responds to frequency deviations, which takes out the kinetic energy of the wind turbine for improving the frequency response of the system. To enhance the participation of the doubly fed induction generator (DFIG) in the frequency control, optimal values of the speed control parameters of the DFIG-based wind turbine have been obtained using integral square error (ISE) technique. The dynamics of the system have been obtained for a small load perturbation, and for contract violation using fuzzy controller.
文摘In the United States, emission regulations are enacted at a state level;individual states are allowed to define what methods they will use to mitigate their carbon emissions. The consequence of this is especially interesting in the state of Texas where new legislation has created a “deregulated” electricity market in which end-users are capable of choosing their electricity provider and subsequently the type of electricity they wish to consume (generated by fossil fuels or renewable sources). In this paper we analyze the effects of carbon tax on the development of renewable generation capacity at the utility level while taking into account expected adoption of rooftop PV systems by individual consumers using agent based modeling techniques. Monte Carlo simulations show carbon abatement trends and proffer updated renewable portfolio standards at various levels of likelihood.
文摘This paper is intended in investigating the Automatic Generation Control (AGC) problem of a deregulated power system using Adaptive Neuro Fuzzy controller. Here, three area control structure of Hydro-Thermal generation has been considered for different contracted scenarios under diverse operating conditions with non-linearities such as Generation Rate Constraint (GRC) and Backlash. In each control area, the effects of the feasible contracts are treated as a set of new input signals in a modified traditional dynamical model. The key benefit of this strategy is its high insensitivity to large load changes and disturbances in the presence of plant parameter discrepancy and system nonlinearities. This newly developed scheme leads to a flexible controller with a simple structure that is easy to realize and consequently it can be constructive for the real world power system. The results of the proposed controller are evaluated with the Hybrid Particle Swarm Optimisation (HCPSO), Real Coded Genetic Algorithm (RCGA) and Artificial Neural Network (ANN) controllers to illustrate its robustness.
文摘This paper proposes a novel price based load frequency control scheme for a two area system, using an Unscheduled Interchange (UI) price signal, which is ideal and suitable for electricity market. The Government of India has introduced Availability Based Tariff (ABT) structure with an intention of ensuring grid security and to regulate grid indiscipline through Central Electricity Regulatory Commission Regulation. After the introduction of this regulation, the over or under injection by the generating companies (GENCOs) during off peak or peak hours are demoralized and the frequency is maintained at the nominal value. In this paper, the GENCOs instead of reacting to this price signal manually, an automated mode of frequency control is deployed in each area using UI price signal to achieve fast response to load change. The Distribution Company (DISCO) Participation Matrix (DPM) has also been employed in this work to relate the scenario under deregulation of electricity market. The proposed scheme has been verified for different cases by simulating it on a two area system, each having four GENCOs and one DISCO in MATLAB/SIMULINK environment. From the results, it is clearly observed that if the proposed method is employed by all GENCOs, it will certainly enhance the control of system frequency and at the same time throw down the UI liability of market participants. It also ensures that the GENCOs and DISCOs strictly adhere to the bilateral contract following the DISCO participation matrix.
文摘With maturing deregulated environment for electricity market, cost of transmission congestion becomes a major issue for power system operation. Uniform Marginal Price and Locational Marginal Price (LMP) are the two practical pricing schemes on energy pricing and congestion cost allocation, which are based on different mechanisms. In this paper, these two pricing schemes are introduced in detail respectively. Also, the modified IEEE-14-bus system is used as a test system to calculate the allocated congestion cost by using these two pricing schemes.
文摘Congestion is the prime cause of problems, due to open access of power system. The AC Power Transmission Congestion Distribution factor (PTCDF) is suitable for computing change in any line quantity for a change in MW bilateral transaction. The proposed PTCDF method is more accurate as compared to the DC power distribution factor. With PTCDF ATC can be calculated. After calculating ATC it is possible to know the valid multiple transaction on power system. With the help of ATC calculations congestion problem can be solved in restructured electrical power network. The paper presents the method for calculating ATC using PTCDF.
基金supported by Hi-Tech Research and Development Program of China (2006AA020403)National Basic Research Program of China (2009CB918801)The National Natural ScienceFoundation of China (30770498)~~
文摘Particle swarm optimization(PSO)is one of the popular stochastic optimization based on swarm intelligence algorithm.This simple and promising algorithm has applications in many research fields.In PSO,each particle can adjust its‘flying’according to its own flying experience and its companions’flying experience.This paper proposes a new PSO variant,called the statistically tracked PSO,which uses group statistical characteristics to update the velocity of the particle after certain iterations,thus avoiding localminima and helping particles to explore global optimum with an improved convergence.The performance of the proposed algorithm is tested on a deregulated automatic generation control problem in power systems and encouraging results are obtained.