期刊文献+
共找到337篇文章
< 1 2 17 >
每页显示 20 50 100
基于MobileNet的轻量级网络构建及其超分辨率图像重建 被引量:7
1
作者 张焯林 曹飞龙 《中国计量大学学报》 2019年第1期56-64,103,共10页
目的:研究轻量级网络的超分辨率重建。方法:尝试在图像超分辨率重建中引入MobileNet网络结构,并使用MobileNet v2网络结构对网络进行改进。结果:通过将标准的卷积网络分解为深度卷积和逐点卷积操作,该网络将参数数量和计算量缩减为原来... 目的:研究轻量级网络的超分辨率重建。方法:尝试在图像超分辨率重建中引入MobileNet网络结构,并使用MobileNet v2网络结构对网络进行改进。结果:通过将标准的卷积网络分解为深度卷积和逐点卷积操作,该网络将参数数量和计算量缩减为原来的1/4左右。结果显示除了在扩大因子为×2的情况下重建效果有所下降之外,在其他的尺度上都取得了更好的效果。使用MobileNet v2网络结构对网络改进以后,该网络能在参数数量和计算量增加不多的情况下进一步提升效果,重建效果超过所有对比方法。结论:所构建的两个轻量级网络不仅在定性指标上面有更好的结果,而且在视觉效果上也具一定优势。 展开更多
关键词 计量 超分辨率重建 MobileNet结构 深度卷积 逐点卷积
下载PDF
一种轻量化的金字塔卷积
2
作者 秦斌斌 孙金杨 《软件》 2024年第4期29-36,70,共9页
金字塔卷积(Pyconv)是近年提出的一种金字塔式多层结构,可以提取多尺度的特征信息,已被应用于多种计算机视觉任务,但其冗余度高,参数量大。因此,本文提出了一种轻量化的金字塔卷积light_Pyconv,其使用卷积分解和分组卷积降低卷积冗余度... 金字塔卷积(Pyconv)是近年提出的一种金字塔式多层结构,可以提取多尺度的特征信息,已被应用于多种计算机视觉任务,但其冗余度高,参数量大。因此,本文提出了一种轻量化的金字塔卷积light_Pyconv,其使用卷积分解和分组卷积降低卷积冗余度,同时,将残差单元、通道混洗技术以及注意力机制引入设计,以维持网络的准确率并加速有效特征的提取。在VGG13网络上,参数量从1.96M下降到了0.56M,而在CIFAR-10和CIFAR-100数据集上的准确率仅分别下降了0.87%和0.04%;在ResNet18网络上,参数量从9.22M下降到了7.72M,而在两个数据集上的准确率仅分别下降了0.24%和0.76%。light_Pyconv在降低模型尺寸的同时,其在收敛速度和准确率波动上的表现仍优于原始网络结构。 展开更多
关键词 金字塔卷积 轻量级的网络 多尺度特征 卷积神经网络 卷积切除 频道的关注
下载PDF
An improved lightweight network based on deep learning for grape recognition in unstructured environments 被引量:1
3
作者 Bingpiao Liu Yunzhi Zhang +4 位作者 Jinhai Wang Lufeng Luo Qinghua Lu Huiling Wei Wenbo Zhu 《Information Processing in Agriculture》 EI CSCD 2024年第2期202-216,共15页
In unstructured environments,dense grape fruit growth and the presence of occlusion cause difficult recognition problems,which will seriously affect the performance of grape picking robots.To address these problems,th... In unstructured environments,dense grape fruit growth and the presence of occlusion cause difficult recognition problems,which will seriously affect the performance of grape picking robots.To address these problems,this study improves the YOLOx-Tiny model and proposes a new grape detection model,YOLOX-RA,which can quickly and accurately identify densely growing and occluded grape bunches.The proposed YOLOX-RA model uses a 3×3 convolutional layer with a step size of 2 to replace the focal layer to reduce the computational burden.The CBS layer in the ResBlock_Body module of the second,third,and fourth layers of the backbone layer is removed,and the CSPLayer module is replaced by the ResBlock-M module to speed up the detection.An auxiliary network(AlNet)with the remaining network blocks was added after the ResBlock-M module to improve the detection accuracy.Two depth-separable convolutions(DsC)are used in the neck module layer to replace the normal convolution to reduce the computational cost.We evaluated the detection performance of SSD,YOLOv4 SSD,YOLOv4-Tiny,YOLO-Grape,YOLOv5-X,YOLOX-Tiny,and YOLOX-RA on a grape test set.The results show that the YOLOX-RA model has the best detection performance,achieving 88.75%mAP,a recognition speed of 84.88 FPS,and model size of 17.53 MB.It can accurately detect densely grown and shaded grape bunches,which can effectively improve the performance of the grape picking robot. 展开更多
关键词 YOLOX Grape recognition depthwise separable convolution Res Block-M AINET
原文传递
基于轻量化图像分割的物流车辆特征定位研究 被引量:6
4
作者 张烨 樊一超 +1 位作者 许艇 郭艺玲 《浙江工业大学学报》 CAS 北大核心 2020年第4期426-434,共9页
针对物流车辆特征定位不精确问题,采用图像分割定位方法达到精确识别。其中,对于图像分割运行速率慢的问题,通过采用通道卷积的方法减少模型参数量,并采用多尺度的空洞卷积增加物流车辆特征信息,解决传统网络感受视野小的问题;对于图像... 针对物流车辆特征定位不精确问题,采用图像分割定位方法达到精确识别。其中,对于图像分割运行速率慢的问题,通过采用通道卷积的方法减少模型参数量,并采用多尺度的空洞卷积增加物流车辆特征信息,解决传统网络感受视野小的问题;对于图像分割粗糙的问题,采用条件随机场,设置像素点间距、颜色相似度等关联信息的方法,得到了更好的实验结果,满足了更精细化的目标边缘分割和内部空洞填补。最后,通过利用最小外接四边形进行框定,解决了物流车辆边界测量的问题,有利于进一步获取车辆的尺寸信息。 展开更多
关键词 物流车辆特征 图像分割 条件随机场 通道卷积 空洞卷积
下载PDF
一种改进Mask R-CNN的化妆棉棉片缺陷检测方法 被引量:2
5
作者 李亮 陈广锋 丁彩红 《东华大学学报(自然科学版)》 CAS 北大核心 2023年第5期78-87,共10页
针对化妆棉棉片缺陷人工检测效率低、精度低的问题,提出一种改进Mask R-CNN的化妆棉棉片缺陷检测方法。在Mask R-CNN的基础上使用ResNet50作为特征提取网络,引入深度卷积网络来提高缺陷特征的学习能力。通过设计多信息融合特征金字塔网... 针对化妆棉棉片缺陷人工检测效率低、精度低的问题,提出一种改进Mask R-CNN的化妆棉棉片缺陷检测方法。在Mask R-CNN的基础上使用ResNet50作为特征提取网络,引入深度卷积网络来提高缺陷特征的学习能力。通过设计多信息融合特征金字塔网络来提高小面积缺陷的检测,引入注意力机制模块来减少漏检和误检现象,构造优化的损失函数来降低样本不平衡对结果的影响。通过试验验证了该算法的有效性,结果表明,改进后的Mask R-CNN模型平均检测精度达95.7%,召回率达88.1%,整体性能明显优于原始的Mask R-CNN、Faster R-CNN、SSD和YOLOv5算法模型,能准确检测出常见的化妆棉棉片缺陷。 展开更多
关键词 化妆棉棉片 缺陷检测 Mask R-CNN 深度卷积 特征融合 注意力机制
下载PDF
Lightweight Malicious Code Classification Method Based on Improved Squeeze Net
6
作者 Li Li Youran Kong Qing Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第1期551-567,共17页
With the growth of the Internet,more and more business is being done online,for example,online offices,online education and so on.While this makes people’s lives more convenient,it also increases the risk of the netw... With the growth of the Internet,more and more business is being done online,for example,online offices,online education and so on.While this makes people’s lives more convenient,it also increases the risk of the network being attacked by malicious code.Therefore,it is important to identify malicious codes on computer systems efficiently.However,most of the existing malicious code detection methods have two problems:(1)The ability of the model to extract features is weak,resulting in poor model performance.(2)The large scale of model data leads to difficulties deploying on devices with limited resources.Therefore,this paper proposes a lightweight malicious code identification model Lightweight Malicious Code Classification Method Based on Improved SqueezeNet(LCMISNet).In this paper,the MFire lightweight feature extraction module is constructed by proposing a feature slicing module and a multi-size depthwise separable convolution module.The feature slicing module reduces the number of parameters by grouping features.The multi-size depthwise separable convolution module reduces the number of parameters and enhances the feature extraction capability by replacing the standard convolution with depthwise separable convolution with different convolution kernel sizes.In addition,this paper also proposes a feature splicing module to connect the MFire lightweight feature extraction module based on the feature reuse and constructs the lightweight model LCMISNet.The malicious code recognition accuracy of LCMISNet on the BIG 2015 dataset and the Malimg dataset reaches 98.90% and 99.58%,respectively.It proves that LCMISNet has a powerful malicious code recognition performance.In addition,compared with other network models,LCMISNet has better performance,and a lower number of parameters and computations. 展开更多
关键词 Lightweight neural network malicious code classification feature slicing feature splicing multi-size depthwise separable convolution
下载PDF
基于改进VOLO网络的糖尿病视网膜病变分类研究
7
作者 赵爽 邱潇钰 +1 位作者 孔祥琳 张雅琪 《生物医学工程研究》 2024年第4期316-323,共8页
为提高糖尿病视网膜病变(diabetic retinopathy, DR)的诊断效率,本研究提出了一种基于VOLO网络的DR分类模型。首先在Outlook attention中添加深度卷积模块,以提高注意力的表达能力;然后在注意力机制后端嵌入归一化的注意力模块突出显著... 为提高糖尿病视网膜病变(diabetic retinopathy, DR)的诊断效率,本研究提出了一种基于VOLO网络的DR分类模型。首先在Outlook attention中添加深度卷积模块,以提高注意力的表达能力;然后在注意力机制后端嵌入归一化的注意力模块突出显著特征,完成DR严重程度的分类。实验结果表明,模型的分类准确率达到89.10%,本研究设计的网络模型具有较好的可行性,可在临床上更好地辅助医生精准治疗。 展开更多
关键词 眼底图像 图像分类 Vision Transformer Outlooker 深度卷积 归一化注意力模块
下载PDF
多视角图像与PP-YOLOE结合的人群QR码检测方法
8
作者 张攀 邓盼 《宜宾学院学报》 2024年第6期33-37,51,共6页
现有目标检测系统在人群密集场景中无法有效实现尺寸极小快速响应码(QR码)的批量自动化检测,为此,提出一种基于多视角图像与改进PP-YOLOE模型的人群QR码辅助检测方法:首先构建多视角图像采集系统,通过侧视图与顶视图图像完成多种目标归... 现有目标检测系统在人群密集场景中无法有效实现尺寸极小快速响应码(QR码)的批量自动化检测,为此,提出一种基于多视角图像与改进PP-YOLOE模型的人群QR码辅助检测方法:首先构建多视角图像采集系统,通过侧视图与顶视图图像完成多种目标归属主体的正确关联;随后在路径聚合网络(PAN)中增加跨层空间注意力模块,提升模型算法小目标检测能力;利用深度可分离卷积对RepResBlock模块进行轻量化改进,提升模型算法执行效率.与其他4种算法的对比实验表明,最优有效目标检测准确率提高9.9%,单次可完成的检测数量达到13个、单目标检测平均耗时72.5 ms. 展开更多
关键词 PP-YOLOE 多视角图像 PAN 深度可分离卷积
下载PDF
基于混合Transformer模型的三维视线估计
9
作者 童立靖 王清河 冯金芝 《中南民族大学学报(自然科学版)》 CAS 2024年第1期97-103,共7页
针对当前在无约束环境中,进行视线估计任务时准确度不高的问题,提出了一种基于混合Transformer模型的视线估计方法.首先,对MobileNet V3网络进行改进,增加了坐标注意力机制,提高MobileNet V3网络特征提取的有效性;再利用改进的MobileNet... 针对当前在无约束环境中,进行视线估计任务时准确度不高的问题,提出了一种基于混合Transformer模型的视线估计方法.首先,对MobileNet V3网络进行改进,增加了坐标注意力机制,提高MobileNet V3网络特征提取的有效性;再利用改进的MobileNet V3网络从人脸图像中提取视线估计特征;其次,对Transformer模型的前向反馈神经网络层进行改进,加入一个卷积核大小为3×3的深度卷积层,来提高全局特征整合能力;最后,将提取到的特征输入到改进后的Transformer模型进行整合处理,输出三维视线估计方向.在MPIIFaceGaze数据集上进行评估,该方法的视线估计角度平均误差为3.56°,表明该模型能够较为准确地进行三维视线估计. 展开更多
关键词 三维视线估计 坐标注意力 深度卷积
下载PDF
A Novel Fall Detection Framework Using Skip-DSCGAN Based on Inertial Sensor Data
10
作者 Kun Fang Julong Pan +1 位作者 Lingyi Li Ruihan Xiang 《Computers, Materials & Continua》 SCIE EI 2024年第1期493-514,共22页
With the widespread use of Internet of Things(IoT)technology in daily life and the considerable safety risks of falls for elderly individuals,research on IoT-based fall detection systems has gainedmuch attention.This ... With the widespread use of Internet of Things(IoT)technology in daily life and the considerable safety risks of falls for elderly individuals,research on IoT-based fall detection systems has gainedmuch attention.This paper proposes an IoT-based spatiotemporal data processing framework based on a depthwise separable convolution generative adversarial network using skip-connection(Skip-DSCGAN)for fall detection.The method uses spatiotemporal data from accelerometers and gyroscopes in inertial sensors as input data.A semisupervised learning approach is adopted to train the model using only activities of daily living(ADL)data,which can avoid data imbalance problems.Furthermore,a quantile-based approach is employed to determine the fall threshold,which makes the fall detection frameworkmore robust.This proposed fall detection framework is evaluated against four other generative adversarial network(GAN)models with superior anomaly detection performance using two fall public datasets(SisFall&MobiAct).The test results show that the proposed method achieves better results,reaching 96.93% and 92.75% accuracy on the above two test datasets,respectively.At the same time,the proposed method also achieves satisfactory results in terms ofmodel size and inference delay time,making it suitable for deployment on wearable devices with limited resources.In addition,this paper also compares GAN-based semisupervised learning methods with supervised learning methods commonly used in fall detection.It clarifies the advantages of GAN-based semisupervised learning methods in fall detection. 展开更多
关键词 Fall detection skip-connection depthwise separable convolution generative adversarial networks inertial sensor
下载PDF
Automatic modulation recognition of radiation source signals based on two-dimensional data matrix and improved residual neural network
11
作者 Guanghua Yi Xinhong Hao +3 位作者 Xiaopeng Yan Jian Dai Yangtian Liu Yanwen Han 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期364-373,共10页
Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the ... Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR. 展开更多
关键词 Automatic modulation recognition Radiation source signals Two-dimensional data matrix Residual neural network depthwise convolution
下载PDF
残差网络融合深度卷积模型研究
12
作者 耿士强 《计算机应用文摘》 2024年第6期97-100,共4页
图像分类任务是计算机视觉中的基本任务之一,可以对输入的图像进行分类。自2012年AlexNet卷积网络模型问世,先后出现了VGG,GoogleNet及ResNet等经典网络模型。卷积网络模型层数的加深可以提高模型的表现能力,而残差网络模型的提出,使得... 图像分类任务是计算机视觉中的基本任务之一,可以对输入的图像进行分类。自2012年AlexNet卷积网络模型问世,先后出现了VGG,GoogleNet及ResNet等经典网络模型。卷积网络模型层数的加深可以提高模型的表现能力,而残差网络模型的提出,使得网络模型的深度达到了成百上千层。随着卷积网络模型层数的不断加深,模型的网络结构越来越复杂。近年来,在智能终端设备普及与发展的同时,大量的轻量化模型不断涌现。其中,MobileNetV使用深度卷积减少了模型的参数量,模型的体积随之减小。文章研究的残差网络融合深度卷积模型(MixNet)在结构上融合了上述2种网络模型的优点,在保持较高正确率的同时大幅减少了模型的参数量。 展开更多
关键词 残差网络 深度卷积 图像分类
下载PDF
基于深度可分离卷积的指静脉识别算法 被引量:5
13
作者 邓若辰 彭程 边赟 《计算机应用》 CSCD 北大核心 2020年第S02期199-203,共5页
针对传统方法在指静脉轴向旋转情况下识别率低的问题,提出了基于深度可分离卷积的指静脉识别算法。首先,通过边缘检测、旋转矫正及图像裁剪等步骤对原始数据集进行了预处理,提取了指静脉图像感兴趣区域(ROI);然后,基于深度可分离卷积设... 针对传统方法在指静脉轴向旋转情况下识别率低的问题,提出了基于深度可分离卷积的指静脉识别算法。首先,通过边缘检测、旋转矫正及图像裁剪等步骤对原始数据集进行了预处理,提取了指静脉图像感兴趣区域(ROI);然后,基于深度可分离卷积设计了不同参数量的三种指静脉识别模型,用以对比不同参数规模对于模型性能的影响;最后,使用预处理的数据集进行模型训练,对现有损失函数进行了改进并引入了在线困难样本挖掘策略,提高了模型在轴向旋转情况下的识别率。仿真实验结果表明,该指静脉识别模型Mobile3在测试集上的识别率达到了99.38%,比Gabor wavelet features方法的识别率提高了4.13个百分点,比Pseudo-elliptical transformer方法的识别率提高了1.7个百分点,验证了所提方法在解决指静脉轴向旋转问题上的有效性,同时平均每张图像的测试时间为22.5 ms,说明其识别率和实时性均满足实际应用需求。 展开更多
关键词 指静脉识别 图像处理 深度学习 卷积神经网络 深度可分离卷积
下载PDF
双通道动静态特征的微表情识别
14
作者 陈庄 赵源 +1 位作者 罗颂 丘嘉豪 《小型微型计算机系统》 CSCD 北大核心 2023年第7期1500-1507,共8页
微表情识别是情感识别领域的一项关键任务,其目的是分析人们隐藏的真实情感.针对微表情识别中微表情视频帧冗余、微表情幅度变化微弱和微表情持续时间短的问题,导致无法有效在微表情视频中提取有效特征,从而降低微表情识别的精度与速度... 微表情识别是情感识别领域的一项关键任务,其目的是分析人们隐藏的真实情感.针对微表情识别中微表情视频帧冗余、微表情幅度变化微弱和微表情持续时间短的问题,导致无法有效在微表情视频中提取有效特征,从而降低微表情识别的精度与速度,提出一种动态特征与静态特征结合的微表情识别方法.首先将视频动态信息压缩为残差积减少帧冗余,提高模型预测速度,然后分别使用稀疏卷积和深度可分离卷积提取动态特征和静态特征,并利用多阶段自适应特征融合的方式充分结合动态特征与静态特征,最后通过标签平滑损失函数提高模型泛化能力.实验结果表示,动态特征与静态特征的结合有效地提高了微表情识别的精度.在MEGC2019的评估标准下,混合数据集的UF1值提高了0.035,UAR值提高了0.045. 展开更多
关键词 微表情识别 稀疏卷积 深度可分离卷积 动静态特征融合 深度学习
下载PDF
复杂场景下实时人脸口罩检测研究
15
作者 洪叁亮 《应用科技》 CAS 2023年第5期54-57,65,共5页
针对AIZOO开源人脸口罩检测算法FaceMaskDetection存在较严重的人脸口罩分类精度低的缺陷,本文设计了高精度轻量级人脸口罩分类模型,提出快速特征提取模块FastBlock和基于多层级特征融合的轻量级人脸口罩分类网络(Light MaskNet)。FastB... 针对AIZOO开源人脸口罩检测算法FaceMaskDetection存在较严重的人脸口罩分类精度低的缺陷,本文设计了高精度轻量级人脸口罩分类模型,提出快速特征提取模块FastBlock和基于多层级特征融合的轻量级人脸口罩分类网络(Light MaskNet)。FastBlock减少深度可分离(depthwise,DW)卷积和1×1卷积中间张量的通道数量,进一步降低计算成本,从而提高了特征提取速度。不同层级之间的特征融合可以增大模型的广度,提高模型的鲁棒性。实验结果表明,该人脸口罩分类模型精度可达98.852%,中央处理器(central processing unit,CPU)推理时间仅为9.8 ms,图形处理器(graphics processing unit,GPU)可实现亚毫秒级运算,仅牺牲少量计算资源就能弥补FaceMaskDetection精度低的缺陷,可很好地满足计算资源有限的边缘设备、移动端等的应用需求。 展开更多
关键词 特征提取器 DW卷积 1×1卷积 人脸口罩检测 快速特征提取模块 多层级特征融合 轻量级人脸口罩分类网络 GPU亚毫秒运算
下载PDF
GMTS: GNN-based multi-scale transformer siamese network for remote sensing building change detection
16
作者 Xinyang Song Zhen Hua Jinjiang Li 《International Journal of Digital Earth》 SCIE EI 2023年第1期1685-1706,共22页
With the remarkable success of change detection(CD)in remote sensing images in the context of deep learning,many convolutional neural network(CNN)based methods have been proposed.In the current research,to obtain a be... With the remarkable success of change detection(CD)in remote sensing images in the context of deep learning,many convolutional neural network(CNN)based methods have been proposed.In the current research,to obtain a better context modeling method for remote sensing images and to capture more spatiotemporal characteristics,several attention-based methods and transformer(TR)-based methods have been proposed.Recent research has also continued to innovate on TR-based methods,and many new methods have been proposed.Most of them require a huge number of calculation to achieve good results.Therefore,using the TR-based mehtod while maintaining the overhead low is a problem to be solved.Here,we propose a GNN-based multi-scale transformer siamese network for remote sensing image change detection(GMTS)that maintains a low network overhead while effectively modeling context in the spatiotemporal domain.We also design a novel hybrid backbone to extract features.Compared with the current CNN backbone,our backbone network has a lower overhead and achieves better results.Further,we use high/low frequency(HiLo)attention to extract more detailed local features and the multi-scale pooling pyramid transformer(MPPT)module to focus on more global features respectively.Finally,we leverage the context modeling capabilities of TR in the spatiotemporal domain to optimize the extracted features.We have a relatively low number of parameters compared to that required by current TR-based methods and achieve a good effect improvement,which provides a good balance between efficiency and performance. 展开更多
关键词 Remote sensing(RS) change detection(CD) depthwise over-parameterized convolutional(DO-Conv) attention mechanism TRANSFORMER graph convolution
原文传递
融合多尺度注意力和累积学习的白血病分类识别
17
作者 李家成 叶哲江 张鹏飞 《现代电子技术》 2023年第19期49-54,共6页
急性淋巴细胞白血病(ALL)图像数据集中有着类间形态学相似、数据不平衡的问题。文中设计了一种包含多尺度空间注意力和通道注意力的卷积模块,可以更好地提取不同类别图像的细颗粒特征信息,用于分类器的预测分类。使用加权交叉熵损失函... 急性淋巴细胞白血病(ALL)图像数据集中有着类间形态学相似、数据不平衡的问题。文中设计了一种包含多尺度空间注意力和通道注意力的卷积模块,可以更好地提取不同类别图像的细颗粒特征信息,用于分类器的预测分类。使用加权交叉熵损失函数惩罚样本数量多的类,让模型学习不会偏向多数类。在此基础上引入累积学习策略,随着训练进程动态地调整正常损失函数和加权损失函数的比重,避免了加权损失函数对表征学习的损害,保持了对分类器的促进效果。最终在开源白血病细胞图像数据集C-NMC验证该设计方法的可行性,实验结果表明,测试集F1分数达到96.2%,对白血病细胞图像有着良好的识别效果。 展开更多
关键词 急性淋巴细胞白血病 加权损失函数 空间注意力机制 通道注意力机制 累积学习 卷积神经网络 深度卷积 类平衡策略
下载PDF
Image Semantic Segmentation for Autonomous Driving Based on Improved U-Net
18
作者 Chuanlong Sun Hong Zhao +2 位作者 Liang Mu Fuliang Xu Laiwei Lu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期787-801,共15页
Image semantic segmentation has become an essential part of autonomous driving.To further improve the generalization ability and the robustness of semantic segmentation algorithms,a lightweight algorithm network based... Image semantic segmentation has become an essential part of autonomous driving.To further improve the generalization ability and the robustness of semantic segmentation algorithms,a lightweight algorithm network based on Squeeze-and-Excitation Attention Mechanism(SE)and Depthwise Separable Convolution(DSC)is designed.Meanwhile,Adam-GC,an Adam optimization algorithm based on Gradient Compression(GC),is proposed to improve the training speed,segmentation accuracy,generalization ability and stability of the algorithm network.To verify and compare the effectiveness of the algorithm network proposed in this paper,the trained networkmodel is used for experimental verification and comparative test on the Cityscapes semantic segmentation dataset.The validation and comparison results show that the overall segmentation results of the algorithmnetwork can achieve 78.02%MIoU on Cityscapes validation set,which is better than the basic algorithm network and the other latest semantic segmentation algorithms network.Besides meeting the stability and accuracy requirements,it has a particular significance for the development of image semantic segmentation. 展开更多
关键词 Deep learning semantic segmentation attention mechanism depthwise separable convolution gradient compression
下载PDF
Lightweight Method for Plant Disease Identification Using Deep Learning
19
作者 Jianbo Lu Ruxin Shi +3 位作者 Jin Tong Wenqi Cheng Xiaoya Ma Xiaobin Liu 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期525-544,共20页
In the deep learning approach for identifying plant diseases,the high complexity of the network model,the large number of parameters,and great computational effort make it challenging to deploy the model on terminal d... In the deep learning approach for identifying plant diseases,the high complexity of the network model,the large number of parameters,and great computational effort make it challenging to deploy the model on terminal devices with limited computational resources.In this study,a lightweight method for plant diseases identification that is an improved version of the ShuffleNetV2 model is proposed.In the proposed model,the depthwise convolution in the basic module of ShuffleNetV2 is replaced with mixed depthwise convolution to capture crop pest images with different resolutions;the efficient channel attention module is added into the ShuffleNetV2 model network structure to enhance the channel features;and the ReLU activation function is replaced with the ReLU6 activation function to prevent the gen-eration of large gradients.Experiments are conducted on the public dataset PlantVillage.The results show that the proposed model achieves an accuracy of 99.43%,which is an improvement of 0.6 percentage points compared to the ShuffleNetV2 model.Compared to lightweight network models,such as MobileNetV2,MobileNetV3,EfficientNet,and EfficientNetV2,and classical convolutional neural network models,such as ResNet34,ResNet50,and ResNet101,the proposed model has fewer parameters and higher recognition accuracy,which provides guidance for deploying crop pest identification methods on resource-constrained devices,including mobile terminals. 展开更多
关键词 Plant disease identification mixed depthwise convolution LIGHTWEIGHT ShuffleNetV2 attention mechanism
下载PDF
Lightweight and highly robust memristor-based hybrid neural networks for electroencephalogram signal processing
20
作者 童霈文 徐晖 +5 位作者 孙毅 汪泳州 彭杰 廖岑 王伟 李清江 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期582-590,共9页
Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor ... Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor one-resistor(1T1R)memristor arrays is limited by the non-ideality of the devices,which prevents the hardware implementation of large and complex networks.In this work,we propose the depthwise separable convolution and bidirectional gate recurrent unit(DSC-BiGRU)network,a lightweight and highly robust hybrid neural network based on 1T1R arrays that enables efficient processing of EEG signals in the temporal,frequency and spatial domains by hybridizing DSC and BiGRU blocks.The network size is reduced and the network robustness is improved while ensuring the network classification accuracy.In the simulation,the measured non-idealities of the 1T1R array are brought into the network through statistical analysis.Compared with traditional convolutional networks,the network parameters are reduced by 95%and the network classification accuracy is improved by 21%at a 95%array yield rate and 5%tolerable error.This work demonstrates that lightweight and highly robust networks based on memristor arrays hold great promise for applications that rely on low consumption and high efficiency. 展开更多
关键词 MEMRISTOR LIGHTWEIGHT ROBUST hybrid neural networks depthwise separable convolution bidirectional gate recurrent unit(BiGRU) one-transistor one-resistor(1T1R)arrays
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部