Traditional pre-stack depth migration can only provide subsurface structural information. However, simple structure information is insufficient for petroleum exploration which also needs amplitude information proporti...Traditional pre-stack depth migration can only provide subsurface structural information. However, simple structure information is insufficient for petroleum exploration which also needs amplitude information proportional to reflection coefficients. In recent years, pre-stack depth migration algorithms which preserve amplitudes and based on the one- way wave equation have been developed. Using the method in the shot domain requires a deconvolution imaging condition which produces some instability in areas with complicated structure and dramatic lateral variation in velocity. Depth migration with preserved amplitude based on the angle domain can overcome the instability of the one-way wave migration imaging condition with preserved amplitude. It can also offer provide velocity analysis in the angle domain of common imaging point gathers. In this paper, based on the foundation of the one-way wave continuation operator with preserved amplitude, we realized the preserved amplitude prestack depth migration in the angle domain. Models and real data validate the accuracy of the method.展开更多
For computation of large amplitude motions of ships fastened to a dock, a fast evaluation scheme is implemented for computation of the time-domain Green function for finite water depth. Based on accurate evaluation of...For computation of large amplitude motions of ships fastened to a dock, a fast evaluation scheme is implemented for computation of the time-domain Green function for finite water depth. Based on accurate evaluation of the Green function directly, a fast approximation method for the Green function is developed by use of Chebyshev polynomials. Examinations are carried out of the accuracy of the Green function and its derivatives from the scheme. It is shown that when an appropriate number of polynomial terms are used, very accurate approximation can be obtained.展开更多
AIM:To describe the characteristics of peripapillary hyperreflective ovoid mass-like structure(PHOMS)in myopic children and to investigate factors associated with PHOMS.METHODS:This retrospective observational study i...AIM:To describe the characteristics of peripapillary hyperreflective ovoid mass-like structure(PHOMS)in myopic children and to investigate factors associated with PHOMS.METHODS:This retrospective observational study included 101 eyes of 101 children(age≤17y)with myopia.All included patients underwent comprehensive clinical examination.Optic nerve canal parameters,including disc diameter,optic nerve head(ONH)tilt angle,and border tissue angle were measured using serial enhanced-depth imaging spectral-domain optical coherence tomography(EDI-OCT).Based on the optic disc drusen consortium’s definition of PHOMS,eyes were classified as PHOMS group and non-PHOMS group.PHOMS was categorized according to height.RESULTS:Sixty-seven(66.3%)eyes were found with PHOMS.Small PHOMS could only be detected by optical coherence tomography(OCT).Medium PHOMS could be seen with blurred optic disc borders corresponding to OCT.The most frequent location of PHOMS was at the nasosuperior(91%,61 of 67 eyes)to ONH disc.The axial length and spherical equivalent were more myopic in the PHOMS group than in the non-PHOMS group(both P<0.001).ONH tilt angle was also significantly greater in PHOMS group than in non-PHOMS group[8.90(7.16-10.54)vs 3.93(3.09-5.25),P<0.001].Border tissue angle was significantly smaller in PHOMS group than in non-PHOMS group[29.70(20.90-43.81)vs 45.62(35.18-60.45),P<0.001].In the multivariable analysis,spherical equivalent(OR=3.246,95%CI=1.209-8.718,P=0.019)and ONH tilt angle(OR=3.275,95%CI=1.422-7.542,P=0.005)were significantly correlated with PHOMS.There was no disc diameter associated with PHOMS.In the linear regression analysis,border tissue angle was negatively associated with PHOMS height(β=-2.227,P<0.001).CONCLUSION:PHOMS is associated with optic disc tilt and optic disc nasal shift in myopia.Disc diameter is not a risk factor for PHOMS.The changes in ONH caused by axial elongation facilitated an understanding of the mechanism of PHOMS.展开更多
基金supported by the National 863 Program(Grant No.2006AA06Z206)the National 973 Program(Grant No.2007CB209605)CNPC geophysical laboratories and Ph.D innovative funding in China University of Petroleum(East China)
文摘Traditional pre-stack depth migration can only provide subsurface structural information. However, simple structure information is insufficient for petroleum exploration which also needs amplitude information proportional to reflection coefficients. In recent years, pre-stack depth migration algorithms which preserve amplitudes and based on the one- way wave equation have been developed. Using the method in the shot domain requires a deconvolution imaging condition which produces some instability in areas with complicated structure and dramatic lateral variation in velocity. Depth migration with preserved amplitude based on the angle domain can overcome the instability of the one-way wave migration imaging condition with preserved amplitude. It can also offer provide velocity analysis in the angle domain of common imaging point gathers. In this paper, based on the foundation of the one-way wave continuation operator with preserved amplitude, we realized the preserved amplitude prestack depth migration in the angle domain. Models and real data validate the accuracy of the method.
文摘For computation of large amplitude motions of ships fastened to a dock, a fast evaluation scheme is implemented for computation of the time-domain Green function for finite water depth. Based on accurate evaluation of the Green function directly, a fast approximation method for the Green function is developed by use of Chebyshev polynomials. Examinations are carried out of the accuracy of the Green function and its derivatives from the scheme. It is shown that when an appropriate number of polynomial terms are used, very accurate approximation can be obtained.
基金Supported by Wuhan Central Hospital Discipline Fund(No.2021XK017).
文摘AIM:To describe the characteristics of peripapillary hyperreflective ovoid mass-like structure(PHOMS)in myopic children and to investigate factors associated with PHOMS.METHODS:This retrospective observational study included 101 eyes of 101 children(age≤17y)with myopia.All included patients underwent comprehensive clinical examination.Optic nerve canal parameters,including disc diameter,optic nerve head(ONH)tilt angle,and border tissue angle were measured using serial enhanced-depth imaging spectral-domain optical coherence tomography(EDI-OCT).Based on the optic disc drusen consortium’s definition of PHOMS,eyes were classified as PHOMS group and non-PHOMS group.PHOMS was categorized according to height.RESULTS:Sixty-seven(66.3%)eyes were found with PHOMS.Small PHOMS could only be detected by optical coherence tomography(OCT).Medium PHOMS could be seen with blurred optic disc borders corresponding to OCT.The most frequent location of PHOMS was at the nasosuperior(91%,61 of 67 eyes)to ONH disc.The axial length and spherical equivalent were more myopic in the PHOMS group than in the non-PHOMS group(both P<0.001).ONH tilt angle was also significantly greater in PHOMS group than in non-PHOMS group[8.90(7.16-10.54)vs 3.93(3.09-5.25),P<0.001].Border tissue angle was significantly smaller in PHOMS group than in non-PHOMS group[29.70(20.90-43.81)vs 45.62(35.18-60.45),P<0.001].In the multivariable analysis,spherical equivalent(OR=3.246,95%CI=1.209-8.718,P=0.019)and ONH tilt angle(OR=3.275,95%CI=1.422-7.542,P=0.005)were significantly correlated with PHOMS.There was no disc diameter associated with PHOMS.In the linear regression analysis,border tissue angle was negatively associated with PHOMS height(β=-2.227,P<0.001).CONCLUSION:PHOMS is associated with optic disc tilt and optic disc nasal shift in myopia.Disc diameter is not a risk factor for PHOMS.The changes in ONH caused by axial elongation facilitated an understanding of the mechanism of PHOMS.