Two-dimensional structure of density fluctuations is examined during the current jump phase, indicating a change from the open magnetic fields to the closed ones. During the smooth current ramp-up phase the two-dimens...Two-dimensional structure of density fluctuations is examined during the current jump phase, indicating a change from the open magnetic fields to the closed ones. During the smooth current ramp-up phase the two-dimensional contour of the LiI intensity shows vertically alignment, consistent with the magnetic surfaces. At the inflection point in Ip ramp-up the LiI intensity contour becomes flat in the observation regime and then suddenly a steep gradient and higher intensity regime are formed in the vertical direction. This higher intensity corresponds to a burst of LiI waveform. According to these changes in the contour, it is found that, within ~1 ms around the burst of LiI, a low frequency coherent wave with a long wavelength rapidly grows. The relations with other signals (magnetic flux and microwave stray power) are discussed with respect to the topological change in the magnetic configuration and mode conversion of the incident electromagnetic waves.展开更多
We report on current profile evolution in EAST NBI driven plasmas where two neutral beams are injected,one during the current ramp phase and the second during flattop.At the end of the current ramp phase,it is found t...We report on current profile evolution in EAST NBI driven plasmas where two neutral beams are injected,one during the current ramp phase and the second during flattop.At the end of the current ramp phase,it is found that a flat q profile with q0-1 is achieved with low magnetic shear in the core.It is observed that plasma current and density both relax much faster than resistive time,even in the absence of sawtooth activity when H-L transition occurs.Density fluctuations associated with magnetic perturbations(3/2) as a precursor to the H-L transition are observed.It is likely that these modes play a role in fast current transport.展开更多
In our research on the density fluctuations of a supersonic jet we were confronted with a quite difficult problem. In the power spectrum obtained either with a spectrum analyzer, the peaks of the two of the modes that...In our research on the density fluctuations of a supersonic jet we were confronted with a quite difficult problem. In the power spectrum obtained either with a spectrum analyzer, the peaks of the two of the modes that we wanted to identify overlapped. We needed to find a signal processing method that would resolve the two main frequencies. We made a thorough investigation of several methods and thought that parametric periodograms were the appropriate tool. The use of parametric periodograms in signal processing requires constant training. The proper application of this tool depends on the determination of the number of parameters that has to be used to best model a real signal. The methods generally used to determine this number are subjective, depending on trial and error and on the experience of the user. Some of these methods rely on the minimization of the estimated variance of the linear prediction error , as a function of the number of parameters n. In many cases, the graph vs n doesn’t have a minimum, and the methods cannot be used. In this paper, we show that there is a strong relationship between and the frequency resolution . That is, as we modify , we obtain graphs of vs n that present at least one minimum. The spectrum obtained with this optimal number of parameters, always reproduces the frequency information of the original signal. In this paper, we present basically the signal processing of the data obtained in a Rayleigh scattering experiment on a supersonic jet that has also been designed by the authors.展开更多
Properties of the geodesic acoustic mode (GAM) density fluctuations are studied using two toroidally separated Langnmir triple-probe arrays on the top of HT-7 tokamak. The GAM scenario is identified in the potential...Properties of the geodesic acoustic mode (GAM) density fluctuations are studied using two toroidally separated Langnmir triple-probe arrays on the top of HT-7 tokamak. The GAM scenario is identified in the potential fluctuations with the toroidally symmetric structure (n =0) and satisfying the temperature scaling of GAM mode frequency. Some theoretical predictions about the mode features of GAM density fluctuations are verified in our experiments: the toroidal mode number of GAM density fluctuations is n = 0; its amplitude is consistent with the theoretical prediction in a factor of 2; the density and potential fluctuations of GAM is in anti-phase at the top of plasma cross-section. Strong nonlinear interactions are found between GAM density fluctuations and ambient turbulence (AT). The results support the conclusions that the envelope modulation of potential fluctuations is dominantly caused by the direct regulation of GAM in the generation processing, and the envelope modulation of density fluctuation is due to the GAM shear effect.展开更多
Due to the difficulties in measuring supersonic density field, the multiresolution analysis of supersonic mixing layer based on experimental images is still a formidable challenge. By utilizing the recently developed ...Due to the difficulties in measuring supersonic density field, the multiresolution analysis of supersonic mixing layer based on experimental images is still a formidable challenge. By utilizing the recently developed nanoparticle based planar laser scattering method, the density field of a supersonic mixing layer was measured at high spatiotemporal resolution. According to the dynamic behavior of coherent structures, the multiresolution characteristics of density fluctuation signals and density field images were studied based on Taylor’s hypothesis of space-time conversion and wavelet analysis. The wavelet coefficients reflect the characteristics of density fluctuation signals at different scales, and the detailed coefficients reflect the differences of approximation at adjacent levels. The density fluctuation signals of supersonic mixing layer differ from the periodic sine signal and exhibit similarity to the fractal Koch signal. The similarity at different scales reveals the fractal characteristic of mixing layer flowfield. The two-dimensional wavelet decomposition and reconstruction of density field images extract the approximate and detailed signals at different scales, which effectively resolve the characteristic structures of the flowfield at different scales.展开更多
基金the NIFS Collaboration Research Program (NIFS07KOAR009,NIFS05KUTR012)the JSPS-CAS Core-University Program in the field of Plasma and Nuclear Fusion
文摘Two-dimensional structure of density fluctuations is examined during the current jump phase, indicating a change from the open magnetic fields to the closed ones. During the smooth current ramp-up phase the two-dimensional contour of the LiI intensity shows vertically alignment, consistent with the magnetic surfaces. At the inflection point in Ip ramp-up the LiI intensity contour becomes flat in the observation regime and then suddenly a steep gradient and higher intensity regime are formed in the vertical direction. This higher intensity corresponds to a burst of LiI waveform. According to these changes in the contour, it is found that, within ~1 ms around the burst of LiI, a low frequency coherent wave with a long wavelength rapidly grows. The relations with other signals (magnetic flux and microwave stray power) are discussed with respect to the topological change in the magnetic configuration and mode conversion of the incident electromagnetic waves.
基金supported by National Key R&D Program of China,contract No.2014GB106002partly supported by the US D.O.E.contract DESC0010469partly supported by the Major Program of Development Foundation of Hefei Center for Physical Science and Technology with contract No.2016FXZY007
文摘We report on current profile evolution in EAST NBI driven plasmas where two neutral beams are injected,one during the current ramp phase and the second during flattop.At the end of the current ramp phase,it is found that a flat q profile with q0-1 is achieved with low magnetic shear in the core.It is observed that plasma current and density both relax much faster than resistive time,even in the absence of sawtooth activity when H-L transition occurs.Density fluctuations associated with magnetic perturbations(3/2) as a precursor to the H-L transition are observed.It is likely that these modes play a role in fast current transport.
文摘In our research on the density fluctuations of a supersonic jet we were confronted with a quite difficult problem. In the power spectrum obtained either with a spectrum analyzer, the peaks of the two of the modes that we wanted to identify overlapped. We needed to find a signal processing method that would resolve the two main frequencies. We made a thorough investigation of several methods and thought that parametric periodograms were the appropriate tool. The use of parametric periodograms in signal processing requires constant training. The proper application of this tool depends on the determination of the number of parameters that has to be used to best model a real signal. The methods generally used to determine this number are subjective, depending on trial and error and on the experience of the user. Some of these methods rely on the minimization of the estimated variance of the linear prediction error , as a function of the number of parameters n. In many cases, the graph vs n doesn’t have a minimum, and the methods cannot be used. In this paper, we show that there is a strong relationship between and the frequency resolution . That is, as we modify , we obtain graphs of vs n that present at least one minimum. The spectrum obtained with this optimal number of parameters, always reproduces the frequency information of the original signal. In this paper, we present basically the signal processing of the data obtained in a Rayleigh scattering experiment on a supersonic jet that has also been designed by the authors.
基金supported by National Natural Science Foundation of China (Nos. 10725523, 10875124, 10905057 and 10990212)National Basic Research Program of China (No.2008CB717800)+2 种基金Research Fund for the Doctoral Program of Higher Education of China (No.20060358059)China Postdoctoral Science Foundation (No.20080440104)Knowledge Innovation Program of the Chinese Academy of Sciences (No.kjcx-yw-n28)
文摘Properties of the geodesic acoustic mode (GAM) density fluctuations are studied using two toroidally separated Langnmir triple-probe arrays on the top of HT-7 tokamak. The GAM scenario is identified in the potential fluctuations with the toroidally symmetric structure (n =0) and satisfying the temperature scaling of GAM mode frequency. Some theoretical predictions about the mode features of GAM density fluctuations are verified in our experiments: the toroidal mode number of GAM density fluctuations is n = 0; its amplitude is consistent with the theoretical prediction in a factor of 2; the density and potential fluctuations of GAM is in anti-phase at the top of plasma cross-section. Strong nonlinear interactions are found between GAM density fluctuations and ambient turbulence (AT). The results support the conclusions that the envelope modulation of potential fluctuations is dominantly caused by the direct regulation of GAM in the generation processing, and the envelope modulation of density fluctuation is due to the GAM shear effect.
基金supported by the National Natural Science Fumdation of China (Grant No. 10672178)
文摘Due to the difficulties in measuring supersonic density field, the multiresolution analysis of supersonic mixing layer based on experimental images is still a formidable challenge. By utilizing the recently developed nanoparticle based planar laser scattering method, the density field of a supersonic mixing layer was measured at high spatiotemporal resolution. According to the dynamic behavior of coherent structures, the multiresolution characteristics of density fluctuation signals and density field images were studied based on Taylor’s hypothesis of space-time conversion and wavelet analysis. The wavelet coefficients reflect the characteristics of density fluctuation signals at different scales, and the detailed coefficients reflect the differences of approximation at adjacent levels. The density fluctuation signals of supersonic mixing layer differ from the periodic sine signal and exhibit similarity to the fractal Koch signal. The similarity at different scales reveals the fractal characteristic of mixing layer flowfield. The two-dimensional wavelet decomposition and reconstruction of density field images extract the approximate and detailed signals at different scales, which effectively resolve the characteristic structures of the flowfield at different scales.