期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
基于双重注意力机制的间质性肺病高分辨率CT图像分类方法
1
作者 赵琪玉 张俊华 +1 位作者 张剑青 徐铭蔚 《国外电子测量技术》 2024年第6期1-11,共11页
为了更精确地分类间质性疾病,提出了一种基于深度学习的分类网络,首先将多头自注意力机制模DenseNet-121结合,使得模型能够同时关注多个重点区域。然后采用卷积注意力模块实现更高效的特征提取,提升网络的空间感知能力,从而增强分类性... 为了更精确地分类间质性疾病,提出了一种基于深度学习的分类网络,首先将多头自注意力机制模DenseNet-121结合,使得模型能够同时关注多个重点区域。然后采用卷积注意力模块实现更高效的特征提取,提升网络的空间感知能力,从而增强分类性能。最后,添加改进的空间金字塔池化层将不同尺度的特征图拼接起来以捕获更丰富的空间信息。此外针对高分辨率C图像数据集类别不均衡问题,引入FocalLoss损失函数,使得模型在训练时更专注于难分类的样本,从而进一步增强模型的分类能力。所提方法在未经训练的数据集上进行测试,达到了88.28%的准确率。相较于原始DenseNet-121在准确率、召回率、精确率、F1分数和Kappa系数提高了4.65%、5.08%、5.82%、5.45%和6.38%。实验结果表明,该方法具有特征提取能力强和分类准确率高的特点。 展开更多
关键词 间质性肺病 深度学习 注意力机制 densenet-121 高分辨率CT图像
下载PDF
基于深度学习的循环水养殖鳗鲡(Anguilla)行为状态识别的研究
2
作者 许志扬 江兴龙 +1 位作者 林茜 李凯 《海洋与湖沼》 CAS CSCD 北大核心 2023年第6期1746-1755,共10页
对鱼类的行为进行智能监测,精准地量化与识别其健康状态,已成为研究热点。为实现养殖鳗鲡行为状态精准识别,提出一种基于DenseNet双流卷积神经网络的鳗鲡行为状态检测方法。利用混合高斯背景模型进行前景提取构建数据集,针对传统卷积神... 对鱼类的行为进行智能监测,精准地量化与识别其健康状态,已成为研究热点。为实现养殖鳗鲡行为状态精准识别,提出一种基于DenseNet双流卷积神经网络的鳗鲡行为状态检测方法。利用混合高斯背景模型进行前景提取构建数据集,针对传统卷积神经网络对于时间动态信息提取能力有限的问题,搭建关联空间特征与时间特征的双流网络结构(Two-stream),并使用DenseNet-121网络替换原网络,对比VGGNet、ResNet等网络,通过密集连接实现特征重用,在搭建更深的网络结构基础上加强了运动特征传递并减少了参数量,更好地提取具有代表性的行为特征。传统双流网络在两端的softmax层仅作简单的决策层平均融合,无法更深程度关联时空高级特征,提出在网络卷积层提取空间特征与时间特征后,加上一层卷积层将时空特征进行卷积融合以提升模型识别精度。实验结果表明:文中提出的基于DenseNet双流卷积神经网络对6种鳗鲡行为状态检测方法准确率达到96.8%,相较于单通道的空间流与时间流网络,准确率分别提升了10.1%和9.5%;相较于以VGGNet、ResNet搭建的双流网络,准确率分别提升了12.4%和4.2%;与决策层平均融合、特征层拼接融合的方式相比,时空特征卷积融合方式准确率分别提升了2.5%和1.7%。 展开更多
关键词 鳗鲡 行为状态 混合高斯背景模型 densenet-121 双流网络结构 卷积融合
下载PDF
Intelligent Deep Convolutional Neural Network Based Object DetectionModel for Visually Challenged People
3
作者 S.Kiruthika Devi Amani Abdulrahman Albraikan +3 位作者 Fahd N.Al-Wesabi Mohamed K.Nour Ahmed Ashour Anwer Mustafa Hilal 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3191-3207,共17页
Artificial Intelligence(AI)and Computer Vision(CV)advancements have led to many useful methodologies in recent years,particularly to help visually-challenged people.Object detection includes a variety of challenges,fo... Artificial Intelligence(AI)and Computer Vision(CV)advancements have led to many useful methodologies in recent years,particularly to help visually-challenged people.Object detection includes a variety of challenges,for example,handlingmultiple class images,images that get augmented when captured by a camera and so on.The test images include all these variants as well.These detection models alert them about their surroundings when they want to walk independently.This study compares four CNN-based pre-trainedmodels:ResidualNetwork(ResNet-50),Inception v3,DenseConvolutional Network(DenseNet-121),and SqueezeNet,predominantly used in image recognition applications.Based on the analysis performed on these test images,the study infers that Inception V3 outperformed other pre-trained models in terms of accuracy and speed.To further improve the performance of the Inception v3 model,the thermal exchange optimization(TEO)algorithm is applied to tune the hyperparameters(number of epochs,batch size,and learning rate)showing the novelty of the work.Better accuracy was achieved owing to the inclusion of an auxiliary classifier as a regularizer,hyperparameter optimizer,and factorization approach.Additionally,Inception V3 can handle images of different sizes.This makes Inception V3 the optimum model for assisting visually challenged people in real-world communication when integrated with Internet of Things(IoT)-based devices. 展开更多
关键词 Pre-trained models object detection visually challenged people deep learning Inception V3 densenet-121
下载PDF
深度学习在肺炎CT图像分类识别中的应用研究
4
作者 王伟德 宛楠 +3 位作者 王鑫 张骏 储佳乐 方超 《福建电脑》 2024年第7期33-36,共4页
为提高肺炎CT图像分类识别的准确性和效率,本文采用网络模型DenseNet-121对CT图像进行分类识别。选取公开的肺炎CT图像数据集,首先进行数据预处理,然后利用该网络架构提取图像特征,并通过迁移学习优化模型性能。实验结果显示,该模型在... 为提高肺炎CT图像分类识别的准确性和效率,本文采用网络模型DenseNet-121对CT图像进行分类识别。选取公开的肺炎CT图像数据集,首先进行数据预处理,然后利用该网络架构提取图像特征,并通过迁移学习优化模型性能。实验结果显示,该模型在正常和肺炎的识别上达到了高精度,提高了分类效率。 展开更多
关键词 肺炎 深度学习 图像识别与分类 densenet-121模型
下载PDF
基于改进YOLOv4算法的苹果叶部病害缺陷检测研究 被引量:11
5
作者 王权顺 吕蕾 +2 位作者 黄德丰 付思琴 余华云 《中国农机化学报》 北大核心 2022年第11期182-187,共6页
针对苹果叶部病害缺陷检测效率低下、误检率高、实时性差等问题,以苹果叶部的灰斑病、黑星病、锈病、斑点落叶病作为研究对象,提出一种基于改进YOLOv4算法的苹果叶部病害缺陷检测算法。首先通过数据扩增对数据集扩充提升鲁棒性,算法通... 针对苹果叶部病害缺陷检测效率低下、误检率高、实时性差等问题,以苹果叶部的灰斑病、黑星病、锈病、斑点落叶病作为研究对象,提出一种基于改进YOLOv4算法的苹果叶部病害缺陷检测算法。首先通过数据扩增对数据集扩充提升鲁棒性,算法通过二分K均值聚类算法确定锚框以解决预设锚框不适用苹果叶部病害的问题,引入DenseNet121作为特征提取网络,提升对苹果叶部病害缺陷的检测性能,并且减小模型大小,降低存储开销。将模型与YOLOv4模型进行对比验证,试验结果表明,改进后的YOLOv4模型平均精度均值(mAP)达到97.52%,与改进前相比提升0.89%,模型大小为62.71 MB,与改进前相比减小182.82 MB,检测速度为26.33 FPS,与改进前相比提升6.78 FPS。能够满足实际生活中对苹果叶部病害检测的需求。 展开更多
关键词 苹果叶部病害 缺陷检测 YOLOv4 二分K均值聚类 densenet121
下载PDF
基于改进深度卷积神经网络的水稻病虫害识别 被引量:7
6
作者 陈浪浪 张艳 《山东农业科学》 北大核心 2023年第5期164-172,共9页
病虫害影响水稻质量和产量,快速、准确地检测出水稻病虫害有利于及时防治。针对传统图像识别方法存在特征提取繁琐、识别率低以及对田间环境下的作物病虫害识别困难等问题,本文提出一种以DenseNet121为基础网络,结合迁移学习与坐标注意... 病虫害影响水稻质量和产量,快速、准确地检测出水稻病虫害有利于及时防治。针对传统图像识别方法存在特征提取繁琐、识别率低以及对田间环境下的作物病虫害识别困难等问题,本文提出一种以DenseNet121为基础网络,结合迁移学习与坐标注意力机制的水稻病虫害识别模型。该模型引入坐标注意力学习图像特征的通道间关系和空间位置的重要性以增强模型的特征提取能力,采用迁移学习策略训练模型以缓解模型在小数据集上的过拟合现象、减小计算资源以及提升模型的识别性能。利用从田间复杂环境收集的水稻病虫害数据集,对该模型与ResNet50、Xception、InceptionV3、InceptionResNetV2及原DenseNet121等卷积神经网络模型的识别效果进行比较,结果表明,该模型能有效识别出水稻常见8种病虫害和健康植株,识别准确率达到98.95%,模型参数量仅为7.23 M,识别效果优于其他模型。这可为田间环境下的其他作物病虫害识别提供参考。 展开更多
关键词 densenet121 迁移学习 注意力机制 水稻病虫害识别
下载PDF
采用改进的EfficientNet识别苹果叶片病害 被引量:3
7
作者 王瑞鹏 陈锋军 +1 位作者 朱学岩 张新伟 《农业工程学报》 EI CAS CSCD 北大核心 2023年第18期201-210,共10页
该研究针对当前自然环境下的苹果叶片病害识别中病害病斑小、空间分布特征不同以及特征相近病害识别困难的问题,设计DEFL (DenseNet121+EfficientNet with focal loss and label smoothing)模型。首先,该模型以并行的EfficientNet-B0网... 该研究针对当前自然环境下的苹果叶片病害识别中病害病斑小、空间分布特征不同以及特征相近病害识别困难的问题,设计DEFL (DenseNet121+EfficientNet with focal loss and label smoothing)模型。首先,该模型以并行的EfficientNet-B0网络和DenseNet121网络为特征提取网络,以提升模型特征提取能力,其次引入结合标签平滑策略的焦点损失函数以加强模型对识别困难样本的关注。经测试,所提模型的识别准确率为99.13%,平均精度均值为98.47%。消融试验表明两项改进分别使模型平均精度均值提高了7.99和3.15个百分点。对比试验结果表明,DEFL模型平均精度均值较于ResNet50、Inception V3、ResNeXt模型以及分别融合这3种模型的EfficientNet-B0模型分别高出14.53、13.17、14.61、 6.4、 7.71以及8.91个百分点,模型规模分别小18.73、 7.7、 12.2、 83.62、 69.6以及60.09MB。Grad-CAM(gradient-weighted class activation mapping)热力图可视化结果表明所提模型重点关注了叶片病变区域。UMAP(uniform manifold approximation and projection)特征降维可视化结果表明所提模型提取的特征更具区分度。实际应用验证取得了97.73%的总体准确率以及95.82%的平均精度均值。综上,该研究提出的DEFL模型能够为苹果病害防治提供有效参考。 展开更多
关键词 病害 图像识别 苹果叶片 EfficientNet densenet121
下载PDF
基于RetinaNet的海洋鱼类检测算法 被引量:2
8
作者 周迎峰 张荣芬 +1 位作者 刘宇红 李宽 《激光与光电子学进展》 CSCD 北大核心 2023年第10期153-161,共9页
为了更好地保护和利用海洋鱼类资源,需要对海洋鱼类进行有效监测,但海洋环境复杂,导致海洋鱼类的识别检测普遍存在检测精度不佳等问题。针对上述问题,本文提出一种基于RetinaNet改进的海洋鱼类检测算法。首先,用DenseNet-121替换Retina... 为了更好地保护和利用海洋鱼类资源,需要对海洋鱼类进行有效监测,但海洋环境复杂,导致海洋鱼类的识别检测普遍存在检测精度不佳等问题。针对上述问题,本文提出一种基于RetinaNet改进的海洋鱼类检测算法。首先,用DenseNet-121替换RetinaNet原有的主干网络,减少参数量的同时保留了更多的鱼类图像特征。然后,在主干网络中引入卷积注意力模块,引导神经网络更有针对性地提取图像特征。其次,在原有的FPN网络中引入新的卷积层,使得改进后的PFPN网络能够融合更多尺度的图像特征。最后,在分类和回归网络中引入soft-NMS,有效改善了相同类别的鱼距离过近和相互遮挡造成的漏检问题。实验表明,提出算法的平均精度(mAP)达到92.12%,相比SSD等算法的检测效果有明显提高,相比原算法的mAP提升了4.71%,对于海洋鱼类具有较好的检测效果。 展开更多
关键词 图像处理 鱼类检测 RetinaNet densenet-121 卷积注意力模块 soft-NMS
原文传递
融合密集卷积网络和注意力机制的拱桥损伤识别
9
作者 辛景舟 刘倩茹 +3 位作者 唐启智 李杰 张洪 周建庭 《振动与冲击》 EI CSCD 北大核心 2024年第14期18-28,36,共12页
针对传统深度学习方法缺乏对网络特征的差异化利用且损伤识别精度易受环境因素影响的问题,提出了一种融合密集卷积网络(DenseNet121)和混合注意力机制(convolutional block attention module,CBAM)的拱桥损伤识别方法。首先,获取拱桥加... 针对传统深度学习方法缺乏对网络特征的差异化利用且损伤识别精度易受环境因素影响的问题,提出了一种融合密集卷积网络(DenseNet121)和混合注意力机制(convolutional block attention module,CBAM)的拱桥损伤识别方法。首先,获取拱桥加速度响应数据,利用连续小波变换将其转换成时频图,形成拱桥损伤识别数据集;其次,将CBAM嵌入DenseNet121模型,加强断层特征的传播和特征的差异化利用,经训练得到拱桥损伤识别模型;然后,基于测试集评估损伤识别模型的性能,引入t分布随机邻域嵌入非线性降维技术对特征进行可视化分析;最后,通过数值案例验证了该方法的可行性和鲁棒性,并应用于劲性骨架拱肋的损伤识别。结果表明:所提方法可增强有用信息的权重,实现网络特征的差异化利用;与传统方法相比,该方法在单损伤和多损伤识别中准确率分别达到了91.67%和92.78%,准确率更高,且具有较强的鲁棒性和实用价值。 展开更多
关键词 桥梁健康监测 拱桥 损伤识别 densenet121 注意力机制 特征可视化
下载PDF
基于时间序列植被指数的小麦条锈病抗性等级鉴定方法
10
作者 苏宝峰 刘砥柱 +2 位作者 陈启帆 韩德俊 吴建辉 《农业工程学报》 EI CAS CSCD 北大核心 2024年第4期155-165,共11页
条锈病严重影响小麦产量,培育抗条锈病的小麦品种至关重要。针对传统育种中抗性鉴定手段单一、效率低的问题,该研究提出了一种通过小麦冠层植被指数的时间序列实现对条锈病不同抗性等级的高效鉴定方法。该方法利用无人机采集自然发病的... 条锈病严重影响小麦产量,培育抗条锈病的小麦品种至关重要。针对传统育种中抗性鉴定手段单一、效率低的问题,该研究提出了一种通过小麦冠层植被指数的时间序列实现对条锈病不同抗性等级的高效鉴定方法。该方法利用无人机采集自然发病的育种群体小麦(共600个样本,516个基因型)冠层多时相的光谱图像,使用随机蛙跳算法和ReliefF算法筛选出6个条锈病病害严重度的敏感特征:归一化色素叶绿素指数(normalized pigment chlorophyll index,NPCI)、沃尔贝克指数(woebbecke index,WI)、叶绿素红边指数(chlorophyll index rededge,CIrededge)、绿大气抵抗植被指数(green atmospherically resistant index,GARI)、归一化差分植被指数(normalized difference vi,NDVI)、叶绿素绿指数(chlorophyll index green,CIgreen),这些敏感特征在试验群体中的时间序列符合条锈病的发病规律,验证了其作为条锈病发病严重度敏感特征的有效性;基于支持向量机(support vector machine,SVM)算法使用上述敏感特征建立条锈病病害严重度等级分类模型,在测试集的表现中,与使用未经过筛选的原始特征所建立的模型相比在精度、平均准确率、平均召回率和F1分数上分别仅下降6.2%、3.3%、2.7%、4.0%,证明了所筛选敏感特征的有效性;针对一般机器学习算法难以捕捉不同抗性等级样本之间较小的特征变化差异的问题,提出了一种从植被指数时间序列转化生成的二维图像中提取特征实现条锈病抗性等级分类的方法。将敏感特征中能够较好区分不同抗病等级的4个时间序列植被指数(NPCI、GARI、NDVI、WI),通过格拉姆角场方法生成格拉姆角和场图像,并制作成数据集,使用DenseNet121网络进行训练,以实现不同条锈病抗病等级的分类。建立的条锈病抗性等级分类模型中,由NPCI时间序列图像建立的分类模型测试效果最佳,其准确率为0.837,召回率为0.834,F1分数可达 展开更多
关键词 无人机 遥感 机器学习 深度学习 小麦条锈病 多光谱成像 densenet121
下载PDF
KurdSet: A Kurdish Handwritten Characters Recognition Dataset Using Convolutional Neural Network
11
作者 Sardar Hasen Ali Maiwan Bahjat Abdulrazzaq 《Computers, Materials & Continua》 SCIE EI 2024年第4期429-448,共20页
Handwritten character recognition(HCR)involves identifying characters in images,documents,and various sources such as forms surveys,questionnaires,and signatures,and transforming them into a machine-readable format fo... Handwritten character recognition(HCR)involves identifying characters in images,documents,and various sources such as forms surveys,questionnaires,and signatures,and transforming them into a machine-readable format for subsequent processing.Successfully recognizing complex and intricately shaped handwritten characters remains a significant obstacle.The use of convolutional neural network(CNN)in recent developments has notably advanced HCR,leveraging the ability to extract discriminative features from extensive sets of raw data.Because of the absence of pre-existing datasets in the Kurdish language,we created a Kurdish handwritten dataset called(KurdSet).The dataset consists of Kurdish characters,digits,texts,and symbols.The dataset consists of 1560 participants and contains 45,240 characters.In this study,we chose characters only from our dataset.We utilized a Kurdish dataset for handwritten character recognition.The study also utilizes various models,including InceptionV3,Xception,DenseNet121,and a customCNNmodel.To show the performance of the KurdSet dataset,we compared it to Arabic handwritten character recognition dataset(AHCD).We applied the models to both datasets to show the performance of our dataset.Additionally,the performance of the models is evaluated using test accuracy,which measures the percentage of correctly classified characters in the evaluation phase.All models performed well in the training phase,DenseNet121 exhibited the highest accuracy among the models,achieving a high accuracy of 99.80%on the Kurdish dataset.And Xception model achieved 98.66%using the Arabic dataset. 展开更多
关键词 CNN models Kurdish handwritten recognition KurdSet dataset Arabic handwritten recognition densenet121 model InceptionV3 model Xception model
下载PDF
基于深度学习的玉米叶片病斑识别方法研究 被引量:4
12
作者 李恩霖 谢秋菊 +1 位作者 苏中滨 高睿 《智慧农业导刊》 2021年第10期1-10,共10页
玉米叶片病害是影响玉米产量的重要因素之一。目前的识别方法受个人经验和传统图像识别技术的限制,难以达到良好的识别效果。文章以玉米锈病、玉米叶枯病、玉米灰斑病3种典型的病害为例,选取PlantVillage公开数据集的500张图像作为每种... 玉米叶片病害是影响玉米产量的重要因素之一。目前的识别方法受个人经验和传统图像识别技术的限制,难以达到良好的识别效果。文章以玉米锈病、玉米叶枯病、玉米灰斑病3种典型的病害为例,选取PlantVillage公开数据集的500张图像作为每种病害样本,建立了基于VGG16、Inception V3、ResNet50、ResNet101、DenseNet121的5种深度卷积神经网络的病虫害识别模型,保留原始结构卷积层并设计新的全连接层,再利用迁移学习迁移各个模型ImageNet卷积层权重参数,对比5种模型性能选取最优的网络模型。结果表明,经过重新设计全连接层的DenseNet121性能最优,准确率、召回率、特异率分别为99.73%、99.73%和99.87%,与其他模型相比DenseNet121参数量小、训练时间短,3种病害识别精确率分别为99.6%、100%和99.6%,可精准地识别玉米病害。 展开更多
关键词 玉米病害 深度学习 迁移学习 最优模型 densenet121
下载PDF
基于多维神经网络深度特征融合的鸟鸣识别算法 被引量:1
13
作者 吉训生 江昆 谢捷 《信号处理》 CSCD 北大核心 2022年第4期844-853,共10页
为了进一步提高夜间迁徙鸟鸣监测的准确率,提出一种基于多维神经网络深度特征融合的鸟鸣识别算法。首先,提取鸟鸣对数尺度的梅尔谱图作为VGG Style模型的训练特征,增强时频谱图的能量分布,通过Mix up数据混合生成虚拟数据以减少模型的... 为了进一步提高夜间迁徙鸟鸣监测的准确率,提出一种基于多维神经网络深度特征融合的鸟鸣识别算法。首先,提取鸟鸣对数尺度的梅尔谱图作为VGG Style模型的训练特征,增强时频谱图的能量分布,通过Mix up数据混合生成虚拟数据以减少模型的过拟合。之后,将预训练的VGG Style作为特征提取器对每一段鸟鸣提取深度特征。鉴于不同维度模型的互补性,该文提出分别使用1维CNN-LSTM、2维VGG Style与3维DenseNet121模型作为特征提取器生成高级特征。对于1维CNN-LSTM,使用小波分解作为池化方法,分别对鸟鸣时、频域进行9层小波分解,生成多层LBP特征以获取更丰富的时频信息。最后,对CNN-LSTM与DenseNet121的全连接层进行优化,减少模型参数,提高实时性。实验结果表明,通过融合多维神经网络的深度特征,使用浅层分类器在含有43种鸟类的CLO-43SD数据集中,获得了93.89%的平衡准确率,相较于最新的Mel-VGG与Subnet-CNN融合模型,平衡准确率提高了7.58%。 展开更多
关键词 鸟鸣识别 1维CNN-LSTM 2维VGG Style 3维densenet121 深度特征融合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部