Artificial Intelligence(AI)and Computer Vision(CV)advancements have led to many useful methodologies in recent years,particularly to help visually-challenged people.Object detection includes a variety of challenges,fo...Artificial Intelligence(AI)and Computer Vision(CV)advancements have led to many useful methodologies in recent years,particularly to help visually-challenged people.Object detection includes a variety of challenges,for example,handlingmultiple class images,images that get augmented when captured by a camera and so on.The test images include all these variants as well.These detection models alert them about their surroundings when they want to walk independently.This study compares four CNN-based pre-trainedmodels:ResidualNetwork(ResNet-50),Inception v3,DenseConvolutional Network(DenseNet-121),and SqueezeNet,predominantly used in image recognition applications.Based on the analysis performed on these test images,the study infers that Inception V3 outperformed other pre-trained models in terms of accuracy and speed.To further improve the performance of the Inception v3 model,the thermal exchange optimization(TEO)algorithm is applied to tune the hyperparameters(number of epochs,batch size,and learning rate)showing the novelty of the work.Better accuracy was achieved owing to the inclusion of an auxiliary classifier as a regularizer,hyperparameter optimizer,and factorization approach.Additionally,Inception V3 can handle images of different sizes.This makes Inception V3 the optimum model for assisting visually challenged people in real-world communication when integrated with Internet of Things(IoT)-based devices.展开更多
该研究针对当前自然环境下的苹果叶片病害识别中病害病斑小、空间分布特征不同以及特征相近病害识别困难的问题,设计DEFL (DenseNet121+EfficientNet with focal loss and label smoothing)模型。首先,该模型以并行的EfficientNet-B0网...该研究针对当前自然环境下的苹果叶片病害识别中病害病斑小、空间分布特征不同以及特征相近病害识别困难的问题,设计DEFL (DenseNet121+EfficientNet with focal loss and label smoothing)模型。首先,该模型以并行的EfficientNet-B0网络和DenseNet121网络为特征提取网络,以提升模型特征提取能力,其次引入结合标签平滑策略的焦点损失函数以加强模型对识别困难样本的关注。经测试,所提模型的识别准确率为99.13%,平均精度均值为98.47%。消融试验表明两项改进分别使模型平均精度均值提高了7.99和3.15个百分点。对比试验结果表明,DEFL模型平均精度均值较于ResNet50、Inception V3、ResNeXt模型以及分别融合这3种模型的EfficientNet-B0模型分别高出14.53、13.17、14.61、 6.4、 7.71以及8.91个百分点,模型规模分别小18.73、 7.7、 12.2、 83.62、 69.6以及60.09MB。Grad-CAM(gradient-weighted class activation mapping)热力图可视化结果表明所提模型重点关注了叶片病变区域。UMAP(uniform manifold approximation and projection)特征降维可视化结果表明所提模型提取的特征更具区分度。实际应用验证取得了97.73%的总体准确率以及95.82%的平均精度均值。综上,该研究提出的DEFL模型能够为苹果病害防治提供有效参考。展开更多
Handwritten character recognition(HCR)involves identifying characters in images,documents,and various sources such as forms surveys,questionnaires,and signatures,and transforming them into a machine-readable format fo...Handwritten character recognition(HCR)involves identifying characters in images,documents,and various sources such as forms surveys,questionnaires,and signatures,and transforming them into a machine-readable format for subsequent processing.Successfully recognizing complex and intricately shaped handwritten characters remains a significant obstacle.The use of convolutional neural network(CNN)in recent developments has notably advanced HCR,leveraging the ability to extract discriminative features from extensive sets of raw data.Because of the absence of pre-existing datasets in the Kurdish language,we created a Kurdish handwritten dataset called(KurdSet).The dataset consists of Kurdish characters,digits,texts,and symbols.The dataset consists of 1560 participants and contains 45,240 characters.In this study,we chose characters only from our dataset.We utilized a Kurdish dataset for handwritten character recognition.The study also utilizes various models,including InceptionV3,Xception,DenseNet121,and a customCNNmodel.To show the performance of the KurdSet dataset,we compared it to Arabic handwritten character recognition dataset(AHCD).We applied the models to both datasets to show the performance of our dataset.Additionally,the performance of the models is evaluated using test accuracy,which measures the percentage of correctly classified characters in the evaluation phase.All models performed well in the training phase,DenseNet121 exhibited the highest accuracy among the models,achieving a high accuracy of 99.80%on the Kurdish dataset.And Xception model achieved 98.66%using the Arabic dataset.展开更多
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2023R191)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4310373DSR61)This study is supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2023/R/1444).
文摘Artificial Intelligence(AI)and Computer Vision(CV)advancements have led to many useful methodologies in recent years,particularly to help visually-challenged people.Object detection includes a variety of challenges,for example,handlingmultiple class images,images that get augmented when captured by a camera and so on.The test images include all these variants as well.These detection models alert them about their surroundings when they want to walk independently.This study compares four CNN-based pre-trainedmodels:ResidualNetwork(ResNet-50),Inception v3,DenseConvolutional Network(DenseNet-121),and SqueezeNet,predominantly used in image recognition applications.Based on the analysis performed on these test images,the study infers that Inception V3 outperformed other pre-trained models in terms of accuracy and speed.To further improve the performance of the Inception v3 model,the thermal exchange optimization(TEO)algorithm is applied to tune the hyperparameters(number of epochs,batch size,and learning rate)showing the novelty of the work.Better accuracy was achieved owing to the inclusion of an auxiliary classifier as a regularizer,hyperparameter optimizer,and factorization approach.Additionally,Inception V3 can handle images of different sizes.This makes Inception V3 the optimum model for assisting visually challenged people in real-world communication when integrated with Internet of Things(IoT)-based devices.
文摘该研究针对当前自然环境下的苹果叶片病害识别中病害病斑小、空间分布特征不同以及特征相近病害识别困难的问题,设计DEFL (DenseNet121+EfficientNet with focal loss and label smoothing)模型。首先,该模型以并行的EfficientNet-B0网络和DenseNet121网络为特征提取网络,以提升模型特征提取能力,其次引入结合标签平滑策略的焦点损失函数以加强模型对识别困难样本的关注。经测试,所提模型的识别准确率为99.13%,平均精度均值为98.47%。消融试验表明两项改进分别使模型平均精度均值提高了7.99和3.15个百分点。对比试验结果表明,DEFL模型平均精度均值较于ResNet50、Inception V3、ResNeXt模型以及分别融合这3种模型的EfficientNet-B0模型分别高出14.53、13.17、14.61、 6.4、 7.71以及8.91个百分点,模型规模分别小18.73、 7.7、 12.2、 83.62、 69.6以及60.09MB。Grad-CAM(gradient-weighted class activation mapping)热力图可视化结果表明所提模型重点关注了叶片病变区域。UMAP(uniform manifold approximation and projection)特征降维可视化结果表明所提模型提取的特征更具区分度。实际应用验证取得了97.73%的总体准确率以及95.82%的平均精度均值。综上,该研究提出的DEFL模型能够为苹果病害防治提供有效参考。
文摘Handwritten character recognition(HCR)involves identifying characters in images,documents,and various sources such as forms surveys,questionnaires,and signatures,and transforming them into a machine-readable format for subsequent processing.Successfully recognizing complex and intricately shaped handwritten characters remains a significant obstacle.The use of convolutional neural network(CNN)in recent developments has notably advanced HCR,leveraging the ability to extract discriminative features from extensive sets of raw data.Because of the absence of pre-existing datasets in the Kurdish language,we created a Kurdish handwritten dataset called(KurdSet).The dataset consists of Kurdish characters,digits,texts,and symbols.The dataset consists of 1560 participants and contains 45,240 characters.In this study,we chose characters only from our dataset.We utilized a Kurdish dataset for handwritten character recognition.The study also utilizes various models,including InceptionV3,Xception,DenseNet121,and a customCNNmodel.To show the performance of the KurdSet dataset,we compared it to Arabic handwritten character recognition dataset(AHCD).We applied the models to both datasets to show the performance of our dataset.Additionally,the performance of the models is evaluated using test accuracy,which measures the percentage of correctly classified characters in the evaluation phase.All models performed well in the training phase,DenseNet121 exhibited the highest accuracy among the models,achieving a high accuracy of 99.80%on the Kurdish dataset.And Xception model achieved 98.66%using the Arabic dataset.