拒绝服务攻击(Denial of Service,DoS)是网络上最常见的一种攻击方式,其攻击类型繁多、影响广泛,其中的分布式拒绝服务攻击(D istributed Denial of Service,DDoS)更是严重威胁网络安全,受到这种攻击的损失是无法计量的。系统地分析了...拒绝服务攻击(Denial of Service,DoS)是网络上最常见的一种攻击方式,其攻击类型繁多、影响广泛,其中的分布式拒绝服务攻击(D istributed Denial of Service,DDoS)更是严重威胁网络安全,受到这种攻击的损失是无法计量的。系统地分析了分布式拒绝服务攻击的攻击原理和攻击类型,通过研究各个DDoS攻击程序提出相应的防御方法。展开更多
In this in-depth exploration, I delve into the complex implications and costs of cybersecurity breaches. Venturing beyond just the immediate repercussions, the research unearths both the overt and concealed long-term ...In this in-depth exploration, I delve into the complex implications and costs of cybersecurity breaches. Venturing beyond just the immediate repercussions, the research unearths both the overt and concealed long-term consequences that businesses encounter. This study integrates findings from various research, including quantitative reports, drawing upon real-world incidents faced by both small and large enterprises. This investigation emphasizes the profound intangible costs, such as trade name devaluation and potential damage to brand reputation, which can persist long after the breach. By collating insights from industry experts and a myriad of research, the study provides a comprehensive perspective on the profound, multi-dimensional impacts of cybersecurity incidents. The overarching aim is to underscore the often-underestimated scope and depth of these breaches, emphasizing the entire timeline post-incident and the urgent need for fortified preventative and reactive measures in the digital domain.展开更多
传统电力系统容易受到网络干扰和攻击,系统中某一部分受到攻击可能会导致整个电力系统瘫痪。由于现代电力系统的广域性和灵活性会导致出现更多的网络攻击点,因此针对新领域研究更多的防御策略变得至关重要。基于此,利用连续时域模型对...传统电力系统容易受到网络干扰和攻击,系统中某一部分受到攻击可能会导致整个电力系统瘫痪。由于现代电力系统的广域性和灵活性会导致出现更多的网络攻击点,因此针对新领域研究更多的防御策略变得至关重要。基于此,利用连续时域模型对各种攻击策略进行建模,并分析电力系统防御拒绝服务(Denial of Service,DoS)攻击的机制。展开更多
Cloud computing is the technology that is currently used to provide users with infrastructure,platform,and software services effectively.Under this system,Platform as a Service(PaaS)offers a medium headed for a web de...Cloud computing is the technology that is currently used to provide users with infrastructure,platform,and software services effectively.Under this system,Platform as a Service(PaaS)offers a medium headed for a web development platform that uniformly distributes the requests and resources.Hackers using Denial of service(DoS)and Distributed Denial of Service(DDoS)attacks abruptly interrupt these requests.Even though several existing methods like signature-based,statistical anomaly-based,and stateful protocol analysis are available,they are not sufficient enough to get rid of Denial of service(DoS)and Distributed Denial of Service(DDoS)attacks and hence there is a great need for a definite algorithm.Concerning this issue,we propose an improved hybrid algorithm which is a combination of Multivariate correlation analysis,Spearman coefficient,and mitigation technique.It can easily differentiate common traffic and attack traffic.Not only that,it greatly helps the network to distribute the resources only for authenticated requests.The effects of comparing with the normalized information have shown an extra encouraging detection accuracy of 99%for the numerous DoS attack as well as DDoS attacks.展开更多
Intrusion Detection Systems (IDS) are pivotal in safeguarding computer networks from malicious activities. This study presents a novel approach by proposing a Hybrid Dense Neural Network-Radial Basis Function Neural N...Intrusion Detection Systems (IDS) are pivotal in safeguarding computer networks from malicious activities. This study presents a novel approach by proposing a Hybrid Dense Neural Network-Radial Basis Function Neural Network (DNN-RBFNN) architecture to enhance the accuracy and efficiency of IDS. The hybrid model synergizes the strengths of both dense learning and radial basis function networks, aiming to address the limitations of traditional IDS techniques in classifying packets that could result in Remote-to-local (R2L), Denial of Service (Dos), and User-to-root (U2R) intrusions.展开更多
In Wireless Sensor Networks(WSN),attacks mostly aim in limiting or eliminating the capability of the network to do its normal function.Detecting this misbehaviour is a demanding issue.And so far the prevailing researc...In Wireless Sensor Networks(WSN),attacks mostly aim in limiting or eliminating the capability of the network to do its normal function.Detecting this misbehaviour is a demanding issue.And so far the prevailing research methods show poor performance.AQN3 centred efficient Intrusion Detection Systems(IDS)is proposed in WSN to ameliorate the performance.The proposed system encompasses Data Gathering(DG)in WSN as well as Intrusion Detection(ID)phases.In DG,the Sensor Nodes(SN)is formed as clusters in the WSN and the Distance-based Fruit Fly Fuzzy c-means(DFFF)algorithm chooses the Cluster Head(CH).Then,the data is amassed by the discovered path.Next,it is tested with the trained IDS.The IDS encompasses‘3’steps:pre-processing,matrix reduction,and classification.In pre-processing,the data is organized in a clear format.Then,attributes are presented on the matrix format and the ELDA(entropybased linear discriminant analysis)lessens the matrix values.Next,the output as of the matrix reduction is inputted to the QN3 classifier,which classifies the denial-of-services(DoS),Remotes to Local(R2L),Users to Root(U2R),and probes into attacked or Normal data.In an experimental estimation,the proposed algorithm’s performance is contrasted with the prevailing algorithms.The proposed work attains an enhanced outcome than the prevailing methods.展开更多
The economic dispatch problem of a smart grid under vicious denial of service(DoS)is the main focus of this paper.Taking the actual situation of power generation as a starting point,a new distributed optimization mode...The economic dispatch problem of a smart grid under vicious denial of service(DoS)is the main focus of this paper.Taking the actual situation of power generation as a starting point,a new distributed optimization model is established which takes the environmentai pollution penalty into account.For saving the limited bandwidth,a novel distributed event-triggered scheme is proposed to keep the resilience and economy of a class of cyber-power syst ems when the communication net work is subject to malicious DoS attack.Then an improved multi-agent consensus protocol based on the gradient descent idea is designed to solve the minimization problem,and the prerequisites to minimize the system power generation cost are analyzed from the aspects of optimality and stability.Finally,the theoretical results are verified through a single-area 10-generat or unit simulation.展开更多
IEEE 802.11 Wi-Fi networks are prone to many denial of service(DoS)attacks due to vulnerabilities at the media access control(MAC)layer of the 802.11 protocol.Due to the data transmission nature of the wireless local ...IEEE 802.11 Wi-Fi networks are prone to many denial of service(DoS)attacks due to vulnerabilities at the media access control(MAC)layer of the 802.11 protocol.Due to the data transmission nature of the wireless local area network(WLAN)through radio waves,its communication is exposed to the possibility of being attacked by illegitimate users.Moreover,the security design of the wireless structure is vulnerable to versatile attacks.For example,the attacker can imitate genuine features,rendering classificationbased methods inaccurate in differentiating between real and false messages.Althoughmany security standards have been proposed over the last decades to overcome many wireless network attacks,effectively detecting such attacks is crucial in today’s real-world applications.This paper presents a novel resource exhaustion attack detection scheme(READS)to detect resource exhaustion attacks effectively.The proposed scheme can differentiate between the genuine and fake management frames in the early stages of the attack such that access points can effectively mitigate the consequences of the attack.The scheme is built through learning from clustered samples using artificial neural networks to identify the genuine and rogue resource exhaustion management frames effectively and efficiently in theWLAN.The proposed scheme consists of four modules whichmake it capable to alleviates the attack impact more effectively than the related work.The experimental results show the effectiveness of the proposed technique by gaining an 89.11%improvement compared to the existing works in terms of detection.展开更多
This paper investigates the secure synchronization control problem for a class of cyber-physical systems(CPSs)with unknown system matrices and intermittent denial-of-service(DoS)attacks.For the attack free case,an opt...This paper investigates the secure synchronization control problem for a class of cyber-physical systems(CPSs)with unknown system matrices and intermittent denial-of-service(DoS)attacks.For the attack free case,an optimal control law consisting of a feedback control and a compensated feedforward control is proposed to achieve the synchronization,and the feedback control gain matrix is learned by iteratively solving an algebraic Riccati equation(ARE).For considering the attack cases,it is difficult to perform the stability analysis of the synchronization errors by using the existing Lyapunov function method due to the presence of unknown system matrices.In order to overcome this difficulty,a matrix polynomial replacement method is given and it is shown that,the proposed optimal control law can still guarantee the asymptotical convergence of synchronization errors if two inequality conditions related with the DoS attacks hold.Finally,two examples are given to illustrate the effectiveness of the proposed approaches.展开更多
文摘拒绝服务攻击(Denial of Service,DoS)是网络上最常见的一种攻击方式,其攻击类型繁多、影响广泛,其中的分布式拒绝服务攻击(D istributed Denial of Service,DDoS)更是严重威胁网络安全,受到这种攻击的损失是无法计量的。系统地分析了分布式拒绝服务攻击的攻击原理和攻击类型,通过研究各个DDoS攻击程序提出相应的防御方法。
文摘In this in-depth exploration, I delve into the complex implications and costs of cybersecurity breaches. Venturing beyond just the immediate repercussions, the research unearths both the overt and concealed long-term consequences that businesses encounter. This study integrates findings from various research, including quantitative reports, drawing upon real-world incidents faced by both small and large enterprises. This investigation emphasizes the profound intangible costs, such as trade name devaluation and potential damage to brand reputation, which can persist long after the breach. By collating insights from industry experts and a myriad of research, the study provides a comprehensive perspective on the profound, multi-dimensional impacts of cybersecurity incidents. The overarching aim is to underscore the often-underestimated scope and depth of these breaches, emphasizing the entire timeline post-incident and the urgent need for fortified preventative and reactive measures in the digital domain.
文摘传统电力系统容易受到网络干扰和攻击,系统中某一部分受到攻击可能会导致整个电力系统瘫痪。由于现代电力系统的广域性和灵活性会导致出现更多的网络攻击点,因此针对新领域研究更多的防御策略变得至关重要。基于此,利用连续时域模型对各种攻击策略进行建模,并分析电力系统防御拒绝服务(Denial of Service,DoS)攻击的机制。
文摘Cloud computing is the technology that is currently used to provide users with infrastructure,platform,and software services effectively.Under this system,Platform as a Service(PaaS)offers a medium headed for a web development platform that uniformly distributes the requests and resources.Hackers using Denial of service(DoS)and Distributed Denial of Service(DDoS)attacks abruptly interrupt these requests.Even though several existing methods like signature-based,statistical anomaly-based,and stateful protocol analysis are available,they are not sufficient enough to get rid of Denial of service(DoS)and Distributed Denial of Service(DDoS)attacks and hence there is a great need for a definite algorithm.Concerning this issue,we propose an improved hybrid algorithm which is a combination of Multivariate correlation analysis,Spearman coefficient,and mitigation technique.It can easily differentiate common traffic and attack traffic.Not only that,it greatly helps the network to distribute the resources only for authenticated requests.The effects of comparing with the normalized information have shown an extra encouraging detection accuracy of 99%for the numerous DoS attack as well as DDoS attacks.
文摘Intrusion Detection Systems (IDS) are pivotal in safeguarding computer networks from malicious activities. This study presents a novel approach by proposing a Hybrid Dense Neural Network-Radial Basis Function Neural Network (DNN-RBFNN) architecture to enhance the accuracy and efficiency of IDS. The hybrid model synergizes the strengths of both dense learning and radial basis function networks, aiming to address the limitations of traditional IDS techniques in classifying packets that could result in Remote-to-local (R2L), Denial of Service (Dos), and User-to-root (U2R) intrusions.
文摘In Wireless Sensor Networks(WSN),attacks mostly aim in limiting or eliminating the capability of the network to do its normal function.Detecting this misbehaviour is a demanding issue.And so far the prevailing research methods show poor performance.AQN3 centred efficient Intrusion Detection Systems(IDS)is proposed in WSN to ameliorate the performance.The proposed system encompasses Data Gathering(DG)in WSN as well as Intrusion Detection(ID)phases.In DG,the Sensor Nodes(SN)is formed as clusters in the WSN and the Distance-based Fruit Fly Fuzzy c-means(DFFF)algorithm chooses the Cluster Head(CH).Then,the data is amassed by the discovered path.Next,it is tested with the trained IDS.The IDS encompasses‘3’steps:pre-processing,matrix reduction,and classification.In pre-processing,the data is organized in a clear format.Then,attributes are presented on the matrix format and the ELDA(entropybased linear discriminant analysis)lessens the matrix values.Next,the output as of the matrix reduction is inputted to the QN3 classifier,which classifies the denial-of-services(DoS),Remotes to Local(R2L),Users to Root(U2R),and probes into attacked or Normal data.In an experimental estimation,the proposed algorithm’s performance is contrasted with the prevailing algorithms.The proposed work attains an enhanced outcome than the prevailing methods.
基金Project supported by the National Natural Science Foundation of China(No.62073269)the China Postdoctoral Science Foundation(No.2018M643661)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2018JQ60330)。
文摘The economic dispatch problem of a smart grid under vicious denial of service(DoS)is the main focus of this paper.Taking the actual situation of power generation as a starting point,a new distributed optimization model is established which takes the environmentai pollution penalty into account.For saving the limited bandwidth,a novel distributed event-triggered scheme is proposed to keep the resilience and economy of a class of cyber-power syst ems when the communication net work is subject to malicious DoS attack.Then an improved multi-agent consensus protocol based on the gradient descent idea is designed to solve the minimization problem,and the prerequisites to minimize the system power generation cost are analyzed from the aspects of optimality and stability.Finally,the theoretical results are verified through a single-area 10-generat or unit simulation.
基金The manuscript APC is supported by the grant name(UMS No.DFK2005)“Smart Vertical farming Technology for Temperate vegetable cultivation in Sabah:practising smart automation system using IR and AI technology in agriculture 4.0”.
文摘IEEE 802.11 Wi-Fi networks are prone to many denial of service(DoS)attacks due to vulnerabilities at the media access control(MAC)layer of the 802.11 protocol.Due to the data transmission nature of the wireless local area network(WLAN)through radio waves,its communication is exposed to the possibility of being attacked by illegitimate users.Moreover,the security design of the wireless structure is vulnerable to versatile attacks.For example,the attacker can imitate genuine features,rendering classificationbased methods inaccurate in differentiating between real and false messages.Althoughmany security standards have been proposed over the last decades to overcome many wireless network attacks,effectively detecting such attacks is crucial in today’s real-world applications.This paper presents a novel resource exhaustion attack detection scheme(READS)to detect resource exhaustion attacks effectively.The proposed scheme can differentiate between the genuine and fake management frames in the early stages of the attack such that access points can effectively mitigate the consequences of the attack.The scheme is built through learning from clustered samples using artificial neural networks to identify the genuine and rogue resource exhaustion management frames effectively and efficiently in theWLAN.The proposed scheme consists of four modules whichmake it capable to alleviates the attack impact more effectively than the related work.The experimental results show the effectiveness of the proposed technique by gaining an 89.11%improvement compared to the existing works in terms of detection.
基金supported in part by the National Natural Science Foundation of China(61873050)the Fundamental Research Funds for the Central Universities(N180405022,N2004010)+1 种基金the Research Fund of State Key Laboratory of Synthetical Automation for Process Industries(2018ZCX14)Liaoning Revitalization Talents Program(XLYC1907088)。
文摘This paper investigates the secure synchronization control problem for a class of cyber-physical systems(CPSs)with unknown system matrices and intermittent denial-of-service(DoS)attacks.For the attack free case,an optimal control law consisting of a feedback control and a compensated feedforward control is proposed to achieve the synchronization,and the feedback control gain matrix is learned by iteratively solving an algebraic Riccati equation(ARE).For considering the attack cases,it is difficult to perform the stability analysis of the synchronization errors by using the existing Lyapunov function method due to the presence of unknown system matrices.In order to overcome this difficulty,a matrix polynomial replacement method is given and it is shown that,the proposed optimal control law can still guarantee the asymptotical convergence of synchronization errors if two inequality conditions related with the DoS attacks hold.Finally,two examples are given to illustrate the effectiveness of the proposed approaches.