Lithium metal is considered to be the most promising anode material for the next-generation rechargeable batteries. However, the uniform and dendrite-free deposition of Li metal anode is hard to achieve, hindering its...Lithium metal is considered to be the most promising anode material for the next-generation rechargeable batteries. However, the uniform and dendrite-free deposition of Li metal anode is hard to achieve, hindering its practical applications. Herein, a lightweight, free-standing and nitrogen-doped carbon nanofiber-based 3D structured conductive matrix(NCNF), which is characterized by a robust and interconnected 3D network with high doping level of 9.5 at%, is prepared by electrospinning as the current collector for Li metal anode. Uniform Li nucleation with reduced polarization and dendrite-free Li deposition are achieved because the NCNF with high nitrogen-doping level and high conductivity provide abundant and homogenous metallic Li nucleation and deposition sites. Excellent cycling stability with high coulombic efficiency are realized. The Li plated NCNF was paired with LiFePO4 to assemble the full battery, also showing high cyclic stability.展开更多
Lithium metal(Li)is believed to be the ultimate anode for lithium-ion batteries(LIBs)owing to the advantages of high theoretical capacity,the lowest electrochemical potential,and light weight.Nevertheless,issues such ...Lithium metal(Li)is believed to be the ultimate anode for lithium-ion batteries(LIBs)owing to the advantages of high theoretical capacity,the lowest electrochemical potential,and light weight.Nevertheless,issues such as uncontrollable growth of Li dendrites,large volume changes,high chemical reactivity,and unstable solid electrolyte interphase(SEI)hinder its rapid development and practical application.Herein a stable and dendrite-free Li-metal anode is obtained by designing a flexible and freestanding MXene/COF framework for metallic Li.COF-LZU1 microspheres are distributed among the MXene film framework.Lithiophilic COF-LZU1 microspheres as nucleation seeds can promote uniform Li nucleation by homogenizing the Li^(+)flux and lowering the nucleation barrier,finally resulting in dense and dendrite-free Li deposition.Under the regulation of the COF-LZU1 seeds,the Coulombic efficiency of the MXene/COF-LZU1 framework and electrochemical stability of corresponding symmetric cells are obviously enhanced.Li-S full cells with the modified Li-metal anode and sulfurized polyacrylonitrile(S@PAN)cathode also exhibited a superior electrochemical performance.展开更多
Aqueous zinc-ion batteries(AZIBs)are one of the promising energy storage systems,which consist of electrode materials,electrolyte,and separator.The first two have been significantly received ample development,while th...Aqueous zinc-ion batteries(AZIBs)are one of the promising energy storage systems,which consist of electrode materials,electrolyte,and separator.The first two have been significantly received ample development,while the prominent role of the separators in manipulating the stability of the electrode has not attracted sufficient attention.In this work,a separator(UiO-66-GF)modified by Zr-based metal organic framework for robust AZIBs is proposed.UiO-66-GF effectively enhances the transport ability of charge carriers and demonstrates preferential orientation of(002)crystal plane,which is favorable for corrosion resistance and dendrite-free zinc deposition.Consequently,Zn|UiO-66-GF-2.2|Zn cells exhibit highly reversible plating/stripping behavior with long cycle life over 1650 h at 2.0 mA cm^(−2),and Zn|UiO-66-GF-2.2|MnO_(2) cells show excellent long-term stability with capacity retention of 85%after 1000 cycles.The reasonable design and application of multifunctional metal organic frameworks modified separators provide useful guidance for constructing durable AZIBs.展开更多
High-energy-density lithium metal batteries are the next-generation battery systems of choice,and replacing the flammable liquid electrolyte with a polymer solid-state electrolyte is a prominent conduct towards realiz...High-energy-density lithium metal batteries are the next-generation battery systems of choice,and replacing the flammable liquid electrolyte with a polymer solid-state electrolyte is a prominent conduct towards realizing the goal of high-safety and high-specific-energy devices.Unfortunately,the inherent intractable problems of poor solid-solid contacts between the electrode/electrolyte and the growth of Li dendrites hinder their practical applications.The in-situ solidification has demonstrated a variety of advantages in the application of polymer electrolytes and artificial interphase,including the design of integrated polymer electrolytes and asymmetric polymer electrolytes to enhance the compatibility of solid–solid contact and compatibility between various electrolytes,and the construction of artificial interphase between the Li anode and cathode to suppress the formation of Li dendrites and to enhance the high-voltage stability of polymer electrolytes.This review firstly elaborates the history of in-situ solidification for solid-state batteries,and then focuses on the synthetic methods of solidified electrolytes.Furthermore,the recent progress of in-situ solidification technology from both the design of polymer electrolytes and the construction of artificial interphase is summarized,and the importance of in-situ solidification technology in enhancing safety is emphasized.Finally,prospects,emerging challenges,and practical applications of in-situ solidification are envisioned.展开更多
For several decades,the promise of implementing of lithium(Li)metal anodes has been regarded as the"holy grail"for Li-based batteries.Herein,we have proposed a facile design of a carbon fiber cloth(CFC)frame...For several decades,the promise of implementing of lithium(Li)metal anodes has been regarded as the"holy grail"for Li-based batteries.Herein,we have proposed a facile design of a carbon fiber cloth(CFC)framework coated with SnO_(2)nanoparticles through a hydrothermal process,which served as a reliable host for prestoring molten Li to produce a CFC@SnO_(2)@Li composite anode.XRD,TEM,HRTEM,XPS and different electrochemical characterizations were carried out.Owing to the synergetic effects of the 3D conductive CFC and the coated lithiophilic SnO_(2)nanoparticles,the designed CFC@SnO_(2)@Li electrodes can buffer the volume changes and reduce the local current density,thus suppress the Li dendrites during cycling.Consequently,the CFC@SnO_(2)electrodes showed a high and stable CE of 98.6%for 1000 cycles at a current density of 1 mA cm^(-2)(1 mAh cm^(-2)).What is more,at a high current density of 5 mA cm^(-2)and a high areal capacity of 5 mAh cm^(-2),the symmetric cell displayed relatively low overpotential and long cycling lifetime of 1600 h.The results confirm its great potential as lithium metal anodes in practical battery applications.展开更多
Although lithium(Li)and sodium(Na)metals can be selected as the promising anode materials for next‐generation rechargeable batteries of high energy density,their practical applications are greatly restricted by the u...Although lithium(Li)and sodium(Na)metals can be selected as the promising anode materials for next‐generation rechargeable batteries of high energy density,their practical applications are greatly restricted by the uncontrollable dendrite growth.Herein,a platinum(Pt)–copper(Cu)alloycoated Cu foam(Pt–Cu foam)is prepared and then used as the substrate for Li and Na metal anodes.Owing to the ultrarough morphology with a threedimensional porous structure and the quite large surface area as well as lithiophilicity and sodiophilicity,both Li and Na dendrite growths are significantly suppressed on the substrate.Moreover,during Li plating,the lithiated Pt atoms can dissolve into Li phase,leaving a lot of microsized holes on the substrate.During Na plating,although the sodiated Pt atoms cannot dissolve into Na phase,the sodiation of Pt atoms elevates many microsized blocks above the current collector.Either the holes or the voids on the surface of Pt–Cu foam what can be extra place for deposited alkali metal,what effectively relaxes the internal stress caused by the volume exchange during Li and Na plating/stripping.Therefore,the symmetric batteries of Li@Pt–Cu foam and Na@Pt–Cu foam have both achieved long‐term cycling stability even at ultrahigh areal capacity at 20 mAh cm−2.展开更多
Lithium(Li) metal anode has received extensive attentions due to its ultrahigh theoretical capacity and the most negative electrode potential. However, dendrite growth severely impedes the practical applications of th...Lithium(Li) metal anode has received extensive attentions due to its ultrahigh theoretical capacity and the most negative electrode potential. However, dendrite growth severely impedes the practical applications of the Li metal anode in rechargeable batteries. In this contribution, a mesoporous graphene with a high specific surface area was synthesized to host the Li metal anode. The mesoporous graphene host(MGH) has a high specific surface area(2090 m^2/g), which affords free space and an interconnected conductive pathway for Li plating and stripping, thus alleviating the volume variation and reducing the generation of dead Li during repeated cycles. More importantly, the high specific surface area of MGH efficiently reduces the local current density of the electrode, which favors a uniform Li nucleation and plating behavior, rendering a dendritefree deposition morphology at a low overpotential. These factors synergistically boost the Li utilization(90.1% vs. 70.1% for Cu foil) and life span(150 cycles vs. 100 cycles for Cu foil) with a low polarization of MGH electrode at an ultrahigh current of 15.0 mA/cm^2. The as-prepared MGH can provide fresh insights into the electrode design of the Li metal anode operating at high rates.展开更多
Designing a multifunctional separator with abundant ion migration paths is crucial for tuning the ion transport in rocking-chair-type batteries.Herein,a polydopamine-functionalized PVDF(PVDF@PDA)nanofibrous membrane i...Designing a multifunctional separator with abundant ion migration paths is crucial for tuning the ion transport in rocking-chair-type batteries.Herein,a polydopamine-functionalized PVDF(PVDF@PDA)nanofibrous membrane is designed to serve as a separator for aqueous zinc-ion batteries(AZIBs).The functional groups(OH and NH)in PDA facilitate the formation of Zn O and Zn N coordination bonds with Zn ions,homogenizing the Zn-ion flux and thus enabling dendrite-free Zn deposition.Moreover,the PVDF@PDA separator effectively inhibits the shuttling of V-species through the formation of V-O coordination bonds.As a result,the Zn/NH_(4)V_(4)O_(10) battery with the PVDF@PDA separator exhibits enhanced cycling stability(92.3%after 1000 cycles at 5 A g^(-1))and rate capability compared to that using a glass fiber separator.This work provides a new avenue to design functionalized separators for high-performance AZIBs.展开更多
Lithium metal anode for batteries has attracted extensive attentions, but its application is restricted by the hazardous dendritic Li growth and dead Li formation. To address these issues, a novel Li anode is develope...Lithium metal anode for batteries has attracted extensive attentions, but its application is restricted by the hazardous dendritic Li growth and dead Li formation. To address these issues, a novel Li anode is developed by infiltrating molten Li metal into conductive carbon cloth decorated with zinc oxide arrays. In carbonate-based electrolyte, the symmetric cell shows no short circuit over 1,500 h at 1 mA·cm^-2, and stable voltage profiles at 3 mA cm^-2 for ~ 300 h cycling. A low overpotential of ~ 243 mV over 350 cycles at a high current density of 10 mA·cm^-2 is achieved, compared to the seriously fluctuated voltage and fast short circuit in the cell using bare Li metal. Meanwhile, the asymmetric cell withstands 1,000 cycles at 10 C (1 C = 167 mAh·g^-1) compared to the 210 cycles for the cell using bare Li anode. The excellent performance is attributed to the well-regulated Li plating/stripping drive n from the formation of LiZn alloy on the wavy carb on fibers, resulting in the suppress!on of dendrite growth and pulverization of the Li electrode during cycling.展开更多
Aqueous rechargeable zinc metal batteries display high theoretical capacity along with economical effectiveness,environmental benignity and high safety.However,dendritic growth and chemical corrosion at the Zn anodes ...Aqueous rechargeable zinc metal batteries display high theoretical capacity along with economical effectiveness,environmental benignity and high safety.However,dendritic growth and chemical corrosion at the Zn anodes limit their widespread applications.Here,we construct a Zn/Bi electrode via in-situ growth of a Bi-based energizer upon Zn metal surface using a replacement reaction.Experimental and theoretical calculations reveal that the Bi-based energizer composed of metallic Bi and ZnBi alloy contributes to Zn plating/stripping due to strong adsorption energy and fast ion transport rates.The resultant Zn/Bi electrode not only circumvents Zn dendrite growth but also improves Zn anode anti-corrosion performance.Specifically,the corrosion current of the Zn/Bi electrode is reduced by 90%compared to bare Zn.Impressively,an ultra-low overpotential of 12mV and stable cycling for 4000h are achieved in a Zn/Bi symmetric cell.A Zn–Cu/Bi asymmetric cell displays a cycle life of 1000 cycles,with an average Coulombic efficiency as high as 99.6%.In addition,an assembled Zn/Bi-activated carbon hybrid capacitor exhibits a stable life of more than 50,000 cycles,an energy density of 64Wh kg−1,and a power density of 7kWkg−1.The capacity retention rate of a Zn/Bi–MnO_(2)full cell is improved by over 150%compared to a Zn–MnO_(2)cell without the Bi-based energizer.Our findings open a new arena for the industrialization of Zn metal batteries for large-scale energy storage applications.展开更多
The finite lithium-ion utilization,short cycling life,and lower capacity retention caused by irreversible dendrite growth become the maximum dilemma in lithium metal batteries’(LMBs’)commercialization.Herein,a perfl...The finite lithium-ion utilization,short cycling life,and lower capacity retention caused by irreversible dendrite growth become the maximum dilemma in lithium metal batteries’(LMBs’)commercialization.Herein,a perfluoroalkyl-functionalized covalent organic framework(COF-F6)equipped with high stability and supernal proton conduction is introduced as an artificial solid electrolyte interface to stable the lithium metal anode.Benefiting from the strong electron-withdrawing effect of perfluoroalkyl,Li^(+)will be freed more by the competition of electronegative fluorine(F)and bis(trifluoromethanesulphonyl)imide anion(TFSI^(-)).The dissociation of LiTFSI and process of Li^(+)desolvation are easier to achieve.In addition,high electronegative fluorine can also regulate local electron-cloud density to induce the fast immigration of Li^(+).All the above roles contribute to improving the Li^(+)transfer number(0.7)and achieving the goal of inhibiting Li dendrite.As a result,the perfluoroalkyl COF-F6 modified LMB presents outstanding cycling stability.The symmetric batteries accomplish an overlong life-span of more than 5000 h with a lower hysteresis voltage(11 mV)at 5 mA·cm^(-2).Also,no dendrites are observed when using an in-situ optical microscope to learn the process of Li deposition.Therefore,this dendrite-free protection tactic holds broad prospects for the practical application of Li metal anodes.展开更多
The commercial viability of lithium-sulfur batteries is still challenged by the notorious lithium polysulfides(Li PSs)shuttle effect on the sulfur cathode and uncontrollable Li dendrites growth on the Li anode.Herein,...The commercial viability of lithium-sulfur batteries is still challenged by the notorious lithium polysulfides(Li PSs)shuttle effect on the sulfur cathode and uncontrollable Li dendrites growth on the Li anode.Herein,a bi-service host with Co-Fe binary-metal selenide quantum dots embedded in three-dimensional inverse opal structured nitrogen-doped carbon skeleton(3DIO FCSe-QDs@NC)is elaborately designed for both sulfur cathode and Li metal anode.The highly dispersed FCSe-QDs with superb adsorptive-catalytic properties can effectively immobilize the soluble Li PSs and improve diffusion-conversion kinetics to mitigate the polysulfide-shutting behaviors.Simultaneously,the 3D-ordered porous networks integrated with abundant lithophilic sites can accomplish uniform Li deposition and homogeneous Li-ion flux for suppressing the growth of dendrites.Taking advantage of these merits,the assembled Li-S full batteries with 3DIO FCSe-QDs@NC host exhibit excellent rate performance and stable cycling ability(a low decay rate of 0.014%over 2,000 cycles at 2C).Remarkably,a promising areal capacity of 8.41 mAh cm^(-2)can be achieved at the sulfur loading up to 8.50 mg cm^(-2)with an ultra-low electrolyte/sulfur ratio of 4.1μL mg^(-1).This work paves the bi-serve host design from systematic experimental and theoretical analysis,which provides a viable avenue to solve the challenges of both sulfur and Li electrodes for practical Li-S full batteries.展开更多
Aqueous zinc-ion batteries(AZIBs) hold great promise as a viable alternative to lithium-ion batteries owing to their high energy density and environmental friendliness.However,AZIBs are consistently plagued by the for...Aqueous zinc-ion batteries(AZIBs) hold great promise as a viable alternative to lithium-ion batteries owing to their high energy density and environmental friendliness.However,AZIBs are consistently plagued by the formation of zinc dendrites and concurrent side reactions,which significantly diminish their overall service life,In this study,the glass fiber separator(GF) is modified using zeolite imidazole salt framework-8(ZIF-8),enabling the development of efficient AZIBs.ZIF-8,which is abundant in nitrogen content,efficiently regulates the desolvation of [Zn(H_(2)O)_(6)]^(2+) to inhibit hydrogen production.Moreover,it possesses abundant nanochannels that facilitate the uniform deposition of Zn~(2+) via a localized action,thereby hindering the formation of dendrites.The insulating properties of ZIF-8 help prevent Zn^(2+) and water from trapping electron reduction at the layer surface,which reduces corrosion of the zinc anode.Consequently,ZIF-8-GF achieves the even transport of Zn^(2+) and regulates the homogeneous deposition along the Zn(002) crystal surface,thus significantly enhancing the electrochemical performance of the AZIBs,In particular,the Zn|Zn symmetric cell with the ZIF-8-GF separator delivers a stable cycle life at0.5 mA cm^(-2) of 2300 h.The Zn|ZIF-8-GF|MnO_(2) cell exhibits reduced voltage polarization while maintaining a capacity retention rate(93.4%) after 1200 cycles at 1.2 A g^(-1) The unique design of the modified diaphragm provides a new approach to realizing high-performance AZIBs.展开更多
For several decades,the promise of implementing of lithium(Li)metal anodes for Li batteries has been a"holy grail"for researchers.Herein,we have proposed a facile design of a MOF-derived Co_(3)O_(4)nanoparti...For several decades,the promise of implementing of lithium(Li)metal anodes for Li batteries has been a"holy grail"for researchers.Herein,we have proposed a facile design of a MOF-derived Co_(3)O_(4)nanoparticles modified nickel foam,i.e.,Co_(3)O_(4)-NF,as a 3D host to achieve a uniform infusion of the molten Li.The molten Li was uniformly absorbed on the Co_(3)O_(4)-NF host only in 10 s due to its high Li lithiophilicity.The obtained Li-Co_(3)O_(4)-NF composite electrode shows high cycling stability in symmetric cells with low voltage hysteresis even at a high current density of 5 mA/cm2.The full cells of Li-Co_(3)O_(4)-NF/LiFePO_(4)can cycle for more than 500 cycles at 2C without obvious capacity decay.SEM after cycling and in situ optical microscope results suggest that the unique 3D host structure of the Li-Co_(3)O_(4)-NF anode plays key roles on suppressing the dendrite growth and decreasing the local current inhomogeneity.We believe this work might provide a new strategy for fabricating dendrite-free Li metal anodes and facilitate practical applications in Li batteries.展开更多
Uncontrolled growth of lithium dendrite will lead to low Coulombic efficiency and poor cycle stability,which hinders the commercialization of lithium metal batteries.Herein,a novel modified lithium anode with reduced ...Uncontrolled growth of lithium dendrite will lead to low Coulombic efficiency and poor cycle stability,which hinders the commercialization of lithium metal batteries.Herein,a novel modified lithium anode with reduced graphene oxide conductive network containing trace lithiophilic phosphorus(P-rGO/Cu)is prepared by electrospraying technique combined with heat treatment process.The rGO layer has a concave and undulating conductive structure,which can significantly improve the effective electrical contact between lithium metal and the current collector,speed up the kinetics of interfacial electron transport and reaction,and improve the resistance of the negative electrode to the internal stress caused by volume change of the lithium,which is advantageous for the stability of the SEI film.The extremely small and uniformly distributed red phosphorus element avoids the volume change caused by lithiation to the maximum extent.Lithiophilic two-phase compound Li_(3)P obtained by alloying P with Li can directionally induce the homogeneous nucleation and dense deposition of lithium metal,address the issue of lithium dendrites and extend the cycle life of the batteries.The obtained P-rGO/Cu exhibits excellent electrochemical performance with an average Coulombic efficiency(CE)of 98%at a current density of 1 mA·cm^(−2) for 400 cycles,and the capacity retention rate of the full cell matched with lithium iron phosphate(LFP)is 83%after 400 cycles at 1C.展开更多
Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced elect...Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation,hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional(3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs.展开更多
Zinc-based batteries are a very promising class of next-generation electrochemical energy storage systems,with high safety,eco-friendliness,abundant resources,and the absence of rigorous manufacturing conditions.Howev...Zinc-based batteries are a very promising class of next-generation electrochemical energy storage systems,with high safety,eco-friendliness,abundant resources,and the absence of rigorous manufacturing conditions.However,practical applications of zinc-based rechargeable batteries are impeded by the low Coulombic efficiency,inferior cyclability,and poor rate capability,due to the instability of zinc anode.Herein,effective strategies for dendritefree zinc anode are symmetrically reviewed,especially highlighting specific mechanisms,delicate design of electrode and current collectors,controlled electrode|electrolyte interface,ameliorative electrolytes,and advanced separators design.First,the particular mechanisms of dendrites formation and the associated fundamentals of the stable Zn metal anodes are presented elaborately.Then,recent key strategies for dendrites prevention and hydrogen evolution reaction suppression are categorized,discussed,and analyzed in detail in view of the electrodes,electrolytes,and separators.Finally,the challenging perspectives and major directions of stable zinc anodes are briefly discussed for further industrialization and commercialization of zinc-based rechargeable batteries.展开更多
Hybrid supercapacitors have shown great potentials to fulfill the demand of future diverse applications such as electric vehicles and portable/wearable electronics.In particular,aqueous zinc-ion hybrid supercapacitors...Hybrid supercapacitors have shown great potentials to fulfill the demand of future diverse applications such as electric vehicles and portable/wearable electronics.In particular,aqueous zinc-ion hybrid supercapacitors(ZHSCs)have gained much attention due to their low-cost,high energy density,and environmental friendliness.Nevertheless,typical ZHSCs use Zn metal anode and normal liquid electrolyte,causing the dendrite issue,restricted working temperature,and inferior device flexibility.Herein,a novel flexible Zn-ion hybrid supercapacitor(FZHSC)is developed by using activated carbon(AC)anode,δ-MnO_(2) cathode,and innovative PVA-based gel electrolyte.In this design,heavy Zn anode and its dendrite issue are avoided and layered cathode with large interlayer spacing is employed.In addition,flexible electrodes are prepared and integrated with an anti-freezing,stretchable,and compressible hydrogel electrolyte,which is attained by simultaneously using glycerol additive and freezing/thawing technique to regulate the hydrogen bond and microstructure.The resulting FZHSC exhibits good rate capability,high energy density(47.86 Wh kg^(−1);3.94 mWh cm^(−3)),high power density(5.81 kW kg^(−1);480 mW cm^(−3)),and excellent cycling stability(~91%capacity retention after 30000 cycles).Furthermore,our FZHSC demonstrates outstanding flexibility with capacitance almost unchanged even after various continuous shape deformations.The hydrogel electrolyte still maintains high ionic conductivity at ultralow temperatures(≤−30℃),enabling the FZHSC cycled well,and powering electronic timer robustly within an all-climate temperature range of−30~80℃.This work highlights that the promising Zn metal-free aqueous ZHSCs can be designed with great multifunctionality for more practical application scenarios.展开更多
Side reactions and dendrite growth triggered by the unstable interface and inhomogeneous deposition have become the biggest obstacle to the commercialization for lithium metal batteries.In this study,a highly-chlorina...Side reactions and dendrite growth triggered by the unstable interface and inhomogeneous deposition have become the biggest obstacle to the commercialization for lithium metal batteries.In this study,a highly-chlorinated organic-inorganic hybrid interfacial protective layer is developed by rationally tuning the interfacial passivation and robustness to achieve the convenient and efficient Li metal anode.The polyvinyl chloride(PVC)can effectively resist water and oxygen,which is confirmed by density functional theory.The organic-dominant solid electrolyte interphases(SEI)with lithium chloride are investigated by the X-ray photoelectron spectroscopy(XPS)with little mineralization of oxide,such as Li_(2)O and Li_(2)CO_(3).With such artificial SEI,a uniform and dense lithium deposition morphology are formed and an ultra-long stable cycle of over 500 h are achieved even at an ultra-high current density of 10 m A/cm^(2).Moreover,the simple and convenient protected anode also exhibits excellent battery stability when paired with the LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)and LiFePO_(4)(LFP)cathode,showing great potential for the commercial application of lithium metal batteries.展开更多
基金the financial support from the Guangdong Natural Science Funds for Distinguished Young Scholar (2017B030306006) the National Natural Science Foundation of China (51772164, U1601206 and U1710256)+1 种基金 the National Key Basic Research Program of China (2014CB932400)Shenzhen Technical Plan Project (JCYJ20150529164918734 and JCYJ20170412171359175)
文摘Lithium metal is considered to be the most promising anode material for the next-generation rechargeable batteries. However, the uniform and dendrite-free deposition of Li metal anode is hard to achieve, hindering its practical applications. Herein, a lightweight, free-standing and nitrogen-doped carbon nanofiber-based 3D structured conductive matrix(NCNF), which is characterized by a robust and interconnected 3D network with high doping level of 9.5 at%, is prepared by electrospinning as the current collector for Li metal anode. Uniform Li nucleation with reduced polarization and dendrite-free Li deposition are achieved because the NCNF with high nitrogen-doping level and high conductivity provide abundant and homogenous metallic Li nucleation and deposition sites. Excellent cycling stability with high coulombic efficiency are realized. The Li plated NCNF was paired with LiFePO4 to assemble the full battery, also showing high cyclic stability.
基金This work was supported by the Natural Science Foundation of Shandong Province(No.ZR2020JQ19)Taishan Scholars Program of Shandong Province(Nos.tsqn201812002 and ts20190908)+3 种基金the National Natural Science Foundation of China(No.51972198)the Young Scholars Program of Shandong University(No.2016WLJH03)the State Key Program of National Natural Science of China(No.61633015),Shenzhen Fundamental Research Program(No.JCYJ20190807093405503)the Project of the Taishan Scholar(No.ts201511004).
文摘Lithium metal(Li)is believed to be the ultimate anode for lithium-ion batteries(LIBs)owing to the advantages of high theoretical capacity,the lowest electrochemical potential,and light weight.Nevertheless,issues such as uncontrollable growth of Li dendrites,large volume changes,high chemical reactivity,and unstable solid electrolyte interphase(SEI)hinder its rapid development and practical application.Herein a stable and dendrite-free Li-metal anode is obtained by designing a flexible and freestanding MXene/COF framework for metallic Li.COF-LZU1 microspheres are distributed among the MXene film framework.Lithiophilic COF-LZU1 microspheres as nucleation seeds can promote uniform Li nucleation by homogenizing the Li^(+)flux and lowering the nucleation barrier,finally resulting in dense and dendrite-free Li deposition.Under the regulation of the COF-LZU1 seeds,the Coulombic efficiency of the MXene/COF-LZU1 framework and electrochemical stability of corresponding symmetric cells are obviously enhanced.Li-S full cells with the modified Li-metal anode and sulfurized polyacrylonitrile(S@PAN)cathode also exhibited a superior electrochemical performance.
基金This work was supported by the National Natural Science Foundation of China(Nos.51872090,51972346)the Hebei Natural Science Fund for Distinguished Young Scholar(No.E2019209433)+2 种基金the Natural Science Foundation of Hebei Province(No.E2020209151)the Hunan Natural Science Fund for Distinguished Young Scholar(2021JJ10064)the Program of Youth Talent Support for Hunan Province(2020RC3011).
文摘Aqueous zinc-ion batteries(AZIBs)are one of the promising energy storage systems,which consist of electrode materials,electrolyte,and separator.The first two have been significantly received ample development,while the prominent role of the separators in manipulating the stability of the electrode has not attracted sufficient attention.In this work,a separator(UiO-66-GF)modified by Zr-based metal organic framework for robust AZIBs is proposed.UiO-66-GF effectively enhances the transport ability of charge carriers and demonstrates preferential orientation of(002)crystal plane,which is favorable for corrosion resistance and dendrite-free zinc deposition.Consequently,Zn|UiO-66-GF-2.2|Zn cells exhibit highly reversible plating/stripping behavior with long cycle life over 1650 h at 2.0 mA cm^(−2),and Zn|UiO-66-GF-2.2|MnO_(2) cells show excellent long-term stability with capacity retention of 85%after 1000 cycles.The reasonable design and application of multifunctional metal organic frameworks modified separators provide useful guidance for constructing durable AZIBs.
基金supported by Beijing Municipal Natural Science Foundation(Z200011)National Key Research and Development Program of China(2021YFB2500300,2021YFB2400300)+8 种基金National Natural Science Foundation of China(22308190,22109084,22108151,22075029,and 22061132002)Key Research and Development Program of Yunnan Province(202103AA080019)the S&T Program of Hebei Province(22344402D)China Postdoctoral Science Foundation(2022TQ0165)Tsinghua-Jiangyin Innovation Special Fund(TJISF)Tsinghua-Toyota Joint Research Fundthe Institute of Strategic Research,Huawei Technologies Co.,LtdOrdos-Tsinghua Innovative&Collaborative Research Program in Carbon Neutralitythe Shuimu Tsinghua Scholar Program of Tsinghua University。
文摘High-energy-density lithium metal batteries are the next-generation battery systems of choice,and replacing the flammable liquid electrolyte with a polymer solid-state electrolyte is a prominent conduct towards realizing the goal of high-safety and high-specific-energy devices.Unfortunately,the inherent intractable problems of poor solid-solid contacts between the electrode/electrolyte and the growth of Li dendrites hinder their practical applications.The in-situ solidification has demonstrated a variety of advantages in the application of polymer electrolytes and artificial interphase,including the design of integrated polymer electrolytes and asymmetric polymer electrolytes to enhance the compatibility of solid–solid contact and compatibility between various electrolytes,and the construction of artificial interphase between the Li anode and cathode to suppress the formation of Li dendrites and to enhance the high-voltage stability of polymer electrolytes.This review firstly elaborates the history of in-situ solidification for solid-state batteries,and then focuses on the synthetic methods of solidified electrolytes.Furthermore,the recent progress of in-situ solidification technology from both the design of polymer electrolytes and the construction of artificial interphase is summarized,and the importance of in-situ solidification technology in enhancing safety is emphasized.Finally,prospects,emerging challenges,and practical applications of in-situ solidification are envisioned.
基金supported by National Natural Science Foundation of China(grant Nos.21701083,22279112)Natural Science Foundation of Hebei Province(grant No.B2022203018).
文摘For several decades,the promise of implementing of lithium(Li)metal anodes has been regarded as the"holy grail"for Li-based batteries.Herein,we have proposed a facile design of a carbon fiber cloth(CFC)framework coated with SnO_(2)nanoparticles through a hydrothermal process,which served as a reliable host for prestoring molten Li to produce a CFC@SnO_(2)@Li composite anode.XRD,TEM,HRTEM,XPS and different electrochemical characterizations were carried out.Owing to the synergetic effects of the 3D conductive CFC and the coated lithiophilic SnO_(2)nanoparticles,the designed CFC@SnO_(2)@Li electrodes can buffer the volume changes and reduce the local current density,thus suppress the Li dendrites during cycling.Consequently,the CFC@SnO_(2)electrodes showed a high and stable CE of 98.6%for 1000 cycles at a current density of 1 mA cm^(-2)(1 mAh cm^(-2)).What is more,at a high current density of 5 mA cm^(-2)and a high areal capacity of 5 mAh cm^(-2),the symmetric cell displayed relatively low overpotential and long cycling lifetime of 1600 h.The results confirm its great potential as lithium metal anodes in practical battery applications.
基金The authors acknowledge the support of the National Nature Science Foundation of China (21908124)Zhaoqing Xijiang Talent Program.
文摘Although lithium(Li)and sodium(Na)metals can be selected as the promising anode materials for next‐generation rechargeable batteries of high energy density,their practical applications are greatly restricted by the uncontrollable dendrite growth.Herein,a platinum(Pt)–copper(Cu)alloycoated Cu foam(Pt–Cu foam)is prepared and then used as the substrate for Li and Na metal anodes.Owing to the ultrarough morphology with a threedimensional porous structure and the quite large surface area as well as lithiophilicity and sodiophilicity,both Li and Na dendrite growths are significantly suppressed on the substrate.Moreover,during Li plating,the lithiated Pt atoms can dissolve into Li phase,leaving a lot of microsized holes on the substrate.During Na plating,although the sodiated Pt atoms cannot dissolve into Na phase,the sodiation of Pt atoms elevates many microsized blocks above the current collector.Either the holes or the voids on the surface of Pt–Cu foam what can be extra place for deposited alkali metal,what effectively relaxes the internal stress caused by the volume exchange during Li and Na plating/stripping.Therefore,the symmetric batteries of Li@Pt–Cu foam and Na@Pt–Cu foam have both achieved long‐term cycling stability even at ultrahigh areal capacity at 20 mAh cm−2.
基金supported by the National Key Research and Development Program (Nos. 2016YFA0202500 and 2016YFA0200102)National Natural Science Foundation of China (Nos. 21676160, 21825501, 21805161, 21808121, and U1801257)the Tsinghua University Initiative Scientific Research Program.
文摘Lithium(Li) metal anode has received extensive attentions due to its ultrahigh theoretical capacity and the most negative electrode potential. However, dendrite growth severely impedes the practical applications of the Li metal anode in rechargeable batteries. In this contribution, a mesoporous graphene with a high specific surface area was synthesized to host the Li metal anode. The mesoporous graphene host(MGH) has a high specific surface area(2090 m^2/g), which affords free space and an interconnected conductive pathway for Li plating and stripping, thus alleviating the volume variation and reducing the generation of dead Li during repeated cycles. More importantly, the high specific surface area of MGH efficiently reduces the local current density of the electrode, which favors a uniform Li nucleation and plating behavior, rendering a dendritefree deposition morphology at a low overpotential. These factors synergistically boost the Li utilization(90.1% vs. 70.1% for Cu foil) and life span(150 cycles vs. 100 cycles for Cu foil) with a low polarization of MGH electrode at an ultrahigh current of 15.0 mA/cm^2. The as-prepared MGH can provide fresh insights into the electrode design of the Li metal anode operating at high rates.
基金supported by the National Natural Science Foundation of China(Grant Nos.51972346,52172263)the Hunan Natural Science Fund for Distinguished Young Scholar(2021JJ10064)+1 种基金the Program of Youth Talent Support for Hunan Province(2020RC3011)the Innovation-Driven Project of Central South University(No.2020CX024).
文摘Designing a multifunctional separator with abundant ion migration paths is crucial for tuning the ion transport in rocking-chair-type batteries.Herein,a polydopamine-functionalized PVDF(PVDF@PDA)nanofibrous membrane is designed to serve as a separator for aqueous zinc-ion batteries(AZIBs).The functional groups(OH and NH)in PDA facilitate the formation of Zn O and Zn N coordination bonds with Zn ions,homogenizing the Zn-ion flux and thus enabling dendrite-free Zn deposition.Moreover,the PVDF@PDA separator effectively inhibits the shuttling of V-species through the formation of V-O coordination bonds.As a result,the Zn/NH_(4)V_(4)O_(10) battery with the PVDF@PDA separator exhibits enhanced cycling stability(92.3%after 1000 cycles at 5 A g^(-1))and rate capability compared to that using a glass fiber separator.This work provides a new avenue to design functionalized separators for high-performance AZIBs.
基金National Key Research and Development Program of China (Nos. 2016YFB0100100 and 2018YFB0104000)Key Project of Science and Technology in Guangdong Province (No. 2017A010106006)National Natural Science Foundation of China (Nos. 21433013 and 51471073).
文摘Lithium metal anode for batteries has attracted extensive attentions, but its application is restricted by the hazardous dendritic Li growth and dead Li formation. To address these issues, a novel Li anode is developed by infiltrating molten Li metal into conductive carbon cloth decorated with zinc oxide arrays. In carbonate-based electrolyte, the symmetric cell shows no short circuit over 1,500 h at 1 mA·cm^-2, and stable voltage profiles at 3 mA cm^-2 for ~ 300 h cycling. A low overpotential of ~ 243 mV over 350 cycles at a high current density of 10 mA·cm^-2 is achieved, compared to the seriously fluctuated voltage and fast short circuit in the cell using bare Li metal. Meanwhile, the asymmetric cell withstands 1,000 cycles at 10 C (1 C = 167 mAh·g^-1) compared to the 210 cycles for the cell using bare Li anode. The excellent performance is attributed to the well-regulated Li plating/stripping drive n from the formation of LiZn alloy on the wavy carb on fibers, resulting in the suppress!on of dendrite growth and pulverization of the Li electrode during cycling.
基金the startup funding support from the Fundamental Research Funds for the Central Universities(Grant KY2060000150,WK2060000040)the support from USTC Center for Micro and Nanoscale Research and Fabrication and NEWAREThe authors also acknowledge the advanced computing resources provided by the Supercomputing Center of the USTC.
文摘Aqueous rechargeable zinc metal batteries display high theoretical capacity along with economical effectiveness,environmental benignity and high safety.However,dendritic growth and chemical corrosion at the Zn anodes limit their widespread applications.Here,we construct a Zn/Bi electrode via in-situ growth of a Bi-based energizer upon Zn metal surface using a replacement reaction.Experimental and theoretical calculations reveal that the Bi-based energizer composed of metallic Bi and ZnBi alloy contributes to Zn plating/stripping due to strong adsorption energy and fast ion transport rates.The resultant Zn/Bi electrode not only circumvents Zn dendrite growth but also improves Zn anode anti-corrosion performance.Specifically,the corrosion current of the Zn/Bi electrode is reduced by 90%compared to bare Zn.Impressively,an ultra-low overpotential of 12mV and stable cycling for 4000h are achieved in a Zn/Bi symmetric cell.A Zn–Cu/Bi asymmetric cell displays a cycle life of 1000 cycles,with an average Coulombic efficiency as high as 99.6%.In addition,an assembled Zn/Bi-activated carbon hybrid capacitor exhibits a stable life of more than 50,000 cycles,an energy density of 64Wh kg−1,and a power density of 7kWkg−1.The capacity retention rate of a Zn/Bi–MnO_(2)full cell is improved by over 150%compared to a Zn–MnO_(2)cell without the Bi-based energizer.Our findings open a new arena for the industrialization of Zn metal batteries for large-scale energy storage applications.
基金The authors acknowledge financial supports provided by the National Natural Science Foundation of China(No.52064049)Key Laboratory of Solid-State Ions for Green Energy of Yunnan University(2019)+1 种基金Analysis and Measurements Center of Yunnan University for the sample testing service,the Electron Microscope Center of Yunnan University for the support of this workthe Postgraduate Research and Innovation Foundation of Yunnan University(No.KC-22221440)。
文摘The finite lithium-ion utilization,short cycling life,and lower capacity retention caused by irreversible dendrite growth become the maximum dilemma in lithium metal batteries’(LMBs’)commercialization.Herein,a perfluoroalkyl-functionalized covalent organic framework(COF-F6)equipped with high stability and supernal proton conduction is introduced as an artificial solid electrolyte interface to stable the lithium metal anode.Benefiting from the strong electron-withdrawing effect of perfluoroalkyl,Li^(+)will be freed more by the competition of electronegative fluorine(F)and bis(trifluoromethanesulphonyl)imide anion(TFSI^(-)).The dissociation of LiTFSI and process of Li^(+)desolvation are easier to achieve.In addition,high electronegative fluorine can also regulate local electron-cloud density to induce the fast immigration of Li^(+).All the above roles contribute to improving the Li^(+)transfer number(0.7)and achieving the goal of inhibiting Li dendrite.As a result,the perfluoroalkyl COF-F6 modified LMB presents outstanding cycling stability.The symmetric batteries accomplish an overlong life-span of more than 5000 h with a lower hysteresis voltage(11 mV)at 5 mA·cm^(-2).Also,no dendrites are observed when using an in-situ optical microscope to learn the process of Li deposition.Therefore,this dendrite-free protection tactic holds broad prospects for the practical application of Li metal anodes.
基金financial support from the National Natural Science Foundation of China(Grant Nos.51871188 and 51931006)the Fundamental Research Funds for the Central Universities of China(Xiamen University:Nos.20720200068,20720190007 and 20720220074)+2 种基金Guangdong Basic and Applied Basic Research Foundation(No.2021A1515010139)Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(HRTP-[2022]-22)the“Double-First Class”Foundation of Materials Intelligent Manufacturing Discipline of Xiamen University。
文摘The commercial viability of lithium-sulfur batteries is still challenged by the notorious lithium polysulfides(Li PSs)shuttle effect on the sulfur cathode and uncontrollable Li dendrites growth on the Li anode.Herein,a bi-service host with Co-Fe binary-metal selenide quantum dots embedded in three-dimensional inverse opal structured nitrogen-doped carbon skeleton(3DIO FCSe-QDs@NC)is elaborately designed for both sulfur cathode and Li metal anode.The highly dispersed FCSe-QDs with superb adsorptive-catalytic properties can effectively immobilize the soluble Li PSs and improve diffusion-conversion kinetics to mitigate the polysulfide-shutting behaviors.Simultaneously,the 3D-ordered porous networks integrated with abundant lithophilic sites can accomplish uniform Li deposition and homogeneous Li-ion flux for suppressing the growth of dendrites.Taking advantage of these merits,the assembled Li-S full batteries with 3DIO FCSe-QDs@NC host exhibit excellent rate performance and stable cycling ability(a low decay rate of 0.014%over 2,000 cycles at 2C).Remarkably,a promising areal capacity of 8.41 mAh cm^(-2)can be achieved at the sulfur loading up to 8.50 mg cm^(-2)with an ultra-low electrolyte/sulfur ratio of 4.1μL mg^(-1).This work paves the bi-serve host design from systematic experimental and theoretical analysis,which provides a viable avenue to solve the challenges of both sulfur and Li electrodes for practical Li-S full batteries.
基金financially supported by National Natural Science Foundation of China(No.51872090,51772097)Hebei Natural Science Fund for Distinguished Young Scholar(No.E2019209433)+2 种基金Youth Talent Program of Hebei Provincial Education Department(No.BJ2018020)Natural Science Foundation of Hebei Province(No.E2020209151)the financial support from Donghua University(101-08-0241022,23D210105,and 101-07-005759)。
文摘Aqueous zinc-ion batteries(AZIBs) hold great promise as a viable alternative to lithium-ion batteries owing to their high energy density and environmental friendliness.However,AZIBs are consistently plagued by the formation of zinc dendrites and concurrent side reactions,which significantly diminish their overall service life,In this study,the glass fiber separator(GF) is modified using zeolite imidazole salt framework-8(ZIF-8),enabling the development of efficient AZIBs.ZIF-8,which is abundant in nitrogen content,efficiently regulates the desolvation of [Zn(H_(2)O)_(6)]^(2+) to inhibit hydrogen production.Moreover,it possesses abundant nanochannels that facilitate the uniform deposition of Zn~(2+) via a localized action,thereby hindering the formation of dendrites.The insulating properties of ZIF-8 help prevent Zn^(2+) and water from trapping electron reduction at the layer surface,which reduces corrosion of the zinc anode.Consequently,ZIF-8-GF achieves the even transport of Zn^(2+) and regulates the homogeneous deposition along the Zn(002) crystal surface,thus significantly enhancing the electrochemical performance of the AZIBs,In particular,the Zn|Zn symmetric cell with the ZIF-8-GF separator delivers a stable cycle life at0.5 mA cm^(-2) of 2300 h.The Zn|ZIF-8-GF|MnO_(2) cell exhibits reduced voltage polarization while maintaining a capacity retention rate(93.4%) after 1200 cycles at 1.2 A g^(-1) The unique design of the modified diaphragm provides a new approach to realizing high-performance AZIBs.
基金This work was financially supported by National Natural Science Foundation of China(No.21701083)Fok Ying-Tong Education Foundation of China(No.171064)Natural Science Foundation of Hebei Province(Nos.B2022203018,B2018203297).
文摘For several decades,the promise of implementing of lithium(Li)metal anodes for Li batteries has been a"holy grail"for researchers.Herein,we have proposed a facile design of a MOF-derived Co_(3)O_(4)nanoparticles modified nickel foam,i.e.,Co_(3)O_(4)-NF,as a 3D host to achieve a uniform infusion of the molten Li.The molten Li was uniformly absorbed on the Co_(3)O_(4)-NF host only in 10 s due to its high Li lithiophilicity.The obtained Li-Co_(3)O_(4)-NF composite electrode shows high cycling stability in symmetric cells with low voltage hysteresis even at a high current density of 5 mA/cm2.The full cells of Li-Co_(3)O_(4)-NF/LiFePO_(4)can cycle for more than 500 cycles at 2C without obvious capacity decay.SEM after cycling and in situ optical microscope results suggest that the unique 3D host structure of the Li-Co_(3)O_(4)-NF anode plays key roles on suppressing the dendrite growth and decreasing the local current inhomogeneity.We believe this work might provide a new strategy for fabricating dendrite-free Li metal anodes and facilitate practical applications in Li batteries.
基金This study was financially supported by the Key-Area Research and Development Program of Guangdong Province(No.2020B090919003)the National Natural Science Foundation of China(Nos.52261160384,51872157 and 52072208)+2 种基金the Fundamental Research Project of Shenzhen(No.JCYJ20190808153609561)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01N111)the Support Plan for Shenzhen Manufacturing Innovation Center(No.20200627215553988).
文摘Uncontrolled growth of lithium dendrite will lead to low Coulombic efficiency and poor cycle stability,which hinders the commercialization of lithium metal batteries.Herein,a novel modified lithium anode with reduced graphene oxide conductive network containing trace lithiophilic phosphorus(P-rGO/Cu)is prepared by electrospraying technique combined with heat treatment process.The rGO layer has a concave and undulating conductive structure,which can significantly improve the effective electrical contact between lithium metal and the current collector,speed up the kinetics of interfacial electron transport and reaction,and improve the resistance of the negative electrode to the internal stress caused by volume change of the lithium,which is advantageous for the stability of the SEI film.The extremely small and uniformly distributed red phosphorus element avoids the volume change caused by lithiation to the maximum extent.Lithiophilic two-phase compound Li_(3)P obtained by alloying P with Li can directionally induce the homogeneous nucleation and dense deposition of lithium metal,address the issue of lithium dendrites and extend the cycle life of the batteries.The obtained P-rGO/Cu exhibits excellent electrochemical performance with an average Coulombic efficiency(CE)of 98%at a current density of 1 mA·cm^(−2) for 400 cycles,and the capacity retention rate of the full cell matched with lithium iron phosphate(LFP)is 83%after 400 cycles at 1C.
基金financially supported by the National Natural Science Foundation of China (Grants Nos. 52064013, 52064014, 52072323 and 52122211)the “Double-First Class” Foundation of Materials and Intelligent Manufacturing Discipline of Xiamen University。
文摘Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation,hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional(3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs.
基金The National Natural Science Foundation of China,Grant/Award Numbers:22125903,51872283,22209173The National Key R&D Program of China,Grant/Award Number:2022YFA1504100+5 种基金The“Transformational Technologies for Clean Energy and Demonstration”Strategic Priority Research Program of the Chinese Academy of Sciences,Grant/Award Number:XDA21000000Dalian Innovation Support Plan for High Level Talents,Grant/Award Number:2019RT09Dalian National Laboratory For Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS,Grant/Award Numbers:DNL202016,DNL202019DICP,Grant/Award Number:DICP I2020032The Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy,Grant/Award Numbers:YLU-DNL Fund 2021002,YLU-DNL Fund 2021009China Postdoctoral Science Foundation,Grant/Award Number:2021M703138。
文摘Zinc-based batteries are a very promising class of next-generation electrochemical energy storage systems,with high safety,eco-friendliness,abundant resources,and the absence of rigorous manufacturing conditions.However,practical applications of zinc-based rechargeable batteries are impeded by the low Coulombic efficiency,inferior cyclability,and poor rate capability,due to the instability of zinc anode.Herein,effective strategies for dendritefree zinc anode are symmetrically reviewed,especially highlighting specific mechanisms,delicate design of electrode and current collectors,controlled electrode|electrolyte interface,ameliorative electrolytes,and advanced separators design.First,the particular mechanisms of dendrites formation and the associated fundamentals of the stable Zn metal anodes are presented elaborately.Then,recent key strategies for dendrites prevention and hydrogen evolution reaction suppression are categorized,discussed,and analyzed in detail in view of the electrodes,electrolytes,and separators.Finally,the challenging perspectives and major directions of stable zinc anodes are briefly discussed for further industrialization and commercialization of zinc-based rechargeable batteries.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.52072136,51972257,51872104,and 52172229)the Ningxia Key R&D Program(2019BFG02018)the Fundamental Research Funds for the Central Universities(WUT:2021IVA115,2021IVA071).
文摘Hybrid supercapacitors have shown great potentials to fulfill the demand of future diverse applications such as electric vehicles and portable/wearable electronics.In particular,aqueous zinc-ion hybrid supercapacitors(ZHSCs)have gained much attention due to their low-cost,high energy density,and environmental friendliness.Nevertheless,typical ZHSCs use Zn metal anode and normal liquid electrolyte,causing the dendrite issue,restricted working temperature,and inferior device flexibility.Herein,a novel flexible Zn-ion hybrid supercapacitor(FZHSC)is developed by using activated carbon(AC)anode,δ-MnO_(2) cathode,and innovative PVA-based gel electrolyte.In this design,heavy Zn anode and its dendrite issue are avoided and layered cathode with large interlayer spacing is employed.In addition,flexible electrodes are prepared and integrated with an anti-freezing,stretchable,and compressible hydrogel electrolyte,which is attained by simultaneously using glycerol additive and freezing/thawing technique to regulate the hydrogen bond and microstructure.The resulting FZHSC exhibits good rate capability,high energy density(47.86 Wh kg^(−1);3.94 mWh cm^(−3)),high power density(5.81 kW kg^(−1);480 mW cm^(−3)),and excellent cycling stability(~91%capacity retention after 30000 cycles).Furthermore,our FZHSC demonstrates outstanding flexibility with capacitance almost unchanged even after various continuous shape deformations.The hydrogel electrolyte still maintains high ionic conductivity at ultralow temperatures(≤−30℃),enabling the FZHSC cycled well,and powering electronic timer robustly within an all-climate temperature range of−30~80℃.This work highlights that the promising Zn metal-free aqueous ZHSCs can be designed with great multifunctionality for more practical application scenarios.
基金supported by the National Natural Science Foundation of China(22222902,52027801,51871113,and 52111530236)the National Key R&D Program of China(2022YFA1203902 and 2022YFA1200093)the Natural Science Foundation of Jiangsu Province(BK20200047)。
基金supported primarily by National Natural Science Foundation of China(Nos.22109025,51972061)National Key Research and Development Program of China(No.2020YFA0710303)Natural Science Foundation of Fujian Province,China(No.2021J05121)。
文摘Side reactions and dendrite growth triggered by the unstable interface and inhomogeneous deposition have become the biggest obstacle to the commercialization for lithium metal batteries.In this study,a highly-chlorinated organic-inorganic hybrid interfacial protective layer is developed by rationally tuning the interfacial passivation and robustness to achieve the convenient and efficient Li metal anode.The polyvinyl chloride(PVC)can effectively resist water and oxygen,which is confirmed by density functional theory.The organic-dominant solid electrolyte interphases(SEI)with lithium chloride are investigated by the X-ray photoelectron spectroscopy(XPS)with little mineralization of oxide,such as Li_(2)O and Li_(2)CO_(3).With such artificial SEI,a uniform and dense lithium deposition morphology are formed and an ultra-long stable cycle of over 500 h are achieved even at an ultra-high current density of 10 m A/cm^(2).Moreover,the simple and convenient protected anode also exhibits excellent battery stability when paired with the LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)and LiFePO_(4)(LFP)cathode,showing great potential for the commercial application of lithium metal batteries.