Two-dimensional graphene offers interesting electronic,thermal,and mechanical properties that are currently being explored for advanced electronics,membranes,and composites.Here we synthesize and explore the biologica...Two-dimensional graphene offers interesting electronic,thermal,and mechanical properties that are currently being explored for advanced electronics,membranes,and composites.Here we synthesize and explore the biological applications of nano-graphene oxide(NGO),i.e.,single-layer graphene oxide sheets down to a few nanometers in lateral width.We develop functionalization chemistry in order to impart solubility and compatibility of NGO in biological environments.We obtain size separated pegylated NGO sheets that are soluble in buffers and serum without agglomeration.The NGO sheets are found to be photoluminescent in the visible and infrared regions.The intrinsic photoluminescence(PL)of NGO is used for live cell imaging in the near-infrared(NIR)with little background.We found that simple physisorption viaπ-stacking can be used for loading doxorubicin,a widely used cancer drug onto NGO functionalized with antibody for selective killing of cancer cells in vitro.Owing to its small size,intrinsic optical properties,large specifi c surface area,low cost,and useful non-covalent interactions with aromatic drug molecules,NGO is a promising new material for biological and medical applications.展开更多
Exosomes are small intracellular membrane-based vesicles with different compositions that are involved in several biological and pathological processes. The exploitation of exosomes as drug delivery vehicles offers im...Exosomes are small intracellular membrane-based vesicles with different compositions that are involved in several biological and pathological processes. The exploitation of exosomes as drug delivery vehicles offers important advantages compared to other nanoparticulate drug delivery systems such as liposomes and polymeric nanoparticles; exosomes are non-immunogenic in nature due to similar composition as body's own cells. In this article, the origin and structure of exosomes as well as their biological functions are outlined. We will then focus on specific applications of exosomes as drug delivery systems in pharmaceutical drug development. An overview of the advantages and challenges faced when using exosomes as a pharmaceutical drug delivery vehicles will also be discussed.展开更多
基金by NIH-NCI funded CCNE TR at Stanford University.We are grateful to Drs.Alice Fan and Dean Felsher for providing the antibodies used in this work.
文摘Two-dimensional graphene offers interesting electronic,thermal,and mechanical properties that are currently being explored for advanced electronics,membranes,and composites.Here we synthesize and explore the biological applications of nano-graphene oxide(NGO),i.e.,single-layer graphene oxide sheets down to a few nanometers in lateral width.We develop functionalization chemistry in order to impart solubility and compatibility of NGO in biological environments.We obtain size separated pegylated NGO sheets that are soluble in buffers and serum without agglomeration.The NGO sheets are found to be photoluminescent in the visible and infrared regions.The intrinsic photoluminescence(PL)of NGO is used for live cell imaging in the near-infrared(NIR)with little background.We found that simple physisorption viaπ-stacking can be used for loading doxorubicin,a widely used cancer drug onto NGO functionalized with antibody for selective killing of cancer cells in vitro.Owing to its small size,intrinsic optical properties,large specifi c surface area,low cost,and useful non-covalent interactions with aromatic drug molecules,NGO is a promising new material for biological and medical applications.
文摘Exosomes are small intracellular membrane-based vesicles with different compositions that are involved in several biological and pathological processes. The exploitation of exosomes as drug delivery vehicles offers important advantages compared to other nanoparticulate drug delivery systems such as liposomes and polymeric nanoparticles; exosomes are non-immunogenic in nature due to similar composition as body's own cells. In this article, the origin and structure of exosomes as well as their biological functions are outlined. We will then focus on specific applications of exosomes as drug delivery systems in pharmaceutical drug development. An overview of the advantages and challenges faced when using exosomes as a pharmaceutical drug delivery vehicles will also be discussed.