A global asymptotic stability problem of cellular neural networks with delay is investigated. A new stability condition is presented based on the Lyapunov-Krasovskii method, which is dependent on the amount of delay. ...A global asymptotic stability problem of cellular neural networks with delay is investigated. A new stability condition is presented based on the Lyapunov-Krasovskii method, which is dependent on the amount of delay. A result is given in the form of a linear matrix inequality, and the admitted upper bound of the delay can be easily obtained. The time delay dependent and independent results can be obtained, which include some previously published results. A numerical example is given to show the effectiveness of the main results.展开更多
The global asymptotic stability problem of Cellular neural networks with delay is investigated.A new stability condition is presented based on Lyapunov-Krasovskii method,which is dependent on the size of delay.The res...The global asymptotic stability problem of Cellular neural networks with delay is investigated.A new stability condition is presented based on Lyapunov-Krasovskii method,which is dependent on the size of delay.The result is given in the form of LMI,and the admitted upper bound of the delay can be obtained easily.The time delay dependent and independent results can be obtained,which include some results in the former literature.Finally,a numerical example is given to illustrate the effectiveness of the main results.展开更多
基金Project supported by the National Natural Science Foundation of China (No.60604004)the Natural Science Foundation of Hebei Province of China (No.F2007000637)the National Natural Science Foundation for Distinguished Young Scholars (No.60525303)
文摘A global asymptotic stability problem of cellular neural networks with delay is investigated. A new stability condition is presented based on the Lyapunov-Krasovskii method, which is dependent on the amount of delay. A result is given in the form of a linear matrix inequality, and the admitted upper bound of the delay can be easily obtained. The time delay dependent and independent results can be obtained, which include some previously published results. A numerical example is given to show the effectiveness of the main results.
文摘The global asymptotic stability problem of Cellular neural networks with delay is investigated.A new stability condition is presented based on Lyapunov-Krasovskii method,which is dependent on the size of delay.The result is given in the form of LMI,and the admitted upper bound of the delay can be obtained easily.The time delay dependent and independent results can be obtained,which include some results in the former literature.Finally,a numerical example is given to illustrate the effectiveness of the main results.